期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多噪声环境下的层级语音识别模型 被引量:9
1
作者 曹晶晶 许洁萍 邵聖淇 《计算机应用》 CSCD 北大核心 2018年第6期1790-1794,共5页
针对多噪声环境下的语音识别问题,提出了将环境噪声作为语音识别上下文考虑的层级语音识别模型。该模型由含噪语音分类模型和特定噪声环境下的声学模型两层组成,通过含噪语音分类模型降低训练数据与测试数据的差异,消除了特征空间研究... 针对多噪声环境下的语音识别问题,提出了将环境噪声作为语音识别上下文考虑的层级语音识别模型。该模型由含噪语音分类模型和特定噪声环境下的声学模型两层组成,通过含噪语音分类模型降低训练数据与测试数据的差异,消除了特征空间研究对噪声稳定性的限制,并且克服了传统多类型训练在某些噪声环境下识别准确率低的弊端,又通过深度神经网络(DNN)进行声学模型建模,进一步增强声学模型分辨噪声的能力,从而提高模型空间语音识别的噪声鲁棒性。实验中将所提模型与多类型训练得到的基准模型进行对比,结果显示所提层级语音识别模型较该基准模型的词错率(WER)相对降低了20.3%,表明该层级语音识别模型有利于增强语音识别的噪声鲁棒性。 展开更多
关键词 语音识别 噪声鲁棒性 环境噪声 声学模型 深度神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部