期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多源小波变换神经网络的旋转机械轴承故障诊断
1
作者
郭海宇
邹圣公
+4 位作者
张晓光
陆凡凡
陈洋
王涵
徐新志
《中国机械工程》
EI
CAS
CSCD
北大核心
2024年第11期2026-2034,共9页
针对旋转机械轴承故障诊断中故障样本稀缺,以及传统模型在小样本条件下容易过拟合及泛化能力差的问题,提出一种多源小波时频变换卷积神经网络。针对单支振动传感器采集的高频数据,设计基于小波变换的时频卷积层,用于融合小波系数的实部...
针对旋转机械轴承故障诊断中故障样本稀缺,以及传统模型在小样本条件下容易过拟合及泛化能力差的问题,提出一种多源小波时频变换卷积神经网络。针对单支振动传感器采集的高频数据,设计基于小波变换的时频卷积层,用于融合小波系数的实部与虚部,其中实部对应振动信号的幅值信息,虚部对应相位信息。与仅考虑实部的卷积层相比,该卷积层能够提取完整的时频特征。利用时频卷积层分别对同一设备上的多支传感器采集的高频数据进行特征提取,并将提取到的多个特征进行级联。设计基于轻量深度可分离卷积的密集模块对级联特征进行更深层次的特征提取,用于实现故障分类。利用凯斯西储大学滚动轴承数据集验证模型的有效性,准确率为98.5%。将模型应用于回转窑、皮带机和篦冷风机的轴承故障诊断,平均准确率达97.19%。
展开更多
关键词
轴承故障诊断
卷积神经网络
小波时频变换
多传感器
下载PDF
职称材料
题名
基于多源小波变换神经网络的旋转机械轴承故障诊断
1
作者
郭海宇
邹圣公
张晓光
陆凡凡
陈洋
王涵
徐新志
机构
沈阳工业大学电气工程学院
上海智质科技有限公司
中国科学技术大学计算机科学与技术学院
长三角信息智能创新研究院
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2024年第11期2026-2034,共9页
基金
国网辽宁省电力有限公司科技项目(2023YF-21)。
文摘
针对旋转机械轴承故障诊断中故障样本稀缺,以及传统模型在小样本条件下容易过拟合及泛化能力差的问题,提出一种多源小波时频变换卷积神经网络。针对单支振动传感器采集的高频数据,设计基于小波变换的时频卷积层,用于融合小波系数的实部与虚部,其中实部对应振动信号的幅值信息,虚部对应相位信息。与仅考虑实部的卷积层相比,该卷积层能够提取完整的时频特征。利用时频卷积层分别对同一设备上的多支传感器采集的高频数据进行特征提取,并将提取到的多个特征进行级联。设计基于轻量深度可分离卷积的密集模块对级联特征进行更深层次的特征提取,用于实现故障分类。利用凯斯西储大学滚动轴承数据集验证模型的有效性,准确率为98.5%。将模型应用于回转窑、皮带机和篦冷风机的轴承故障诊断,平均准确率达97.19%。
关键词
轴承故障诊断
卷积神经网络
小波时频变换
多传感器
Keywords
bearing fault diagnosis
convolutional neural network
wavelet time-frequency transform
multi-sensor
分类号
TH133 [机械工程—机械制造及自动化]
TH17 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多源小波变换神经网络的旋转机械轴承故障诊断
郭海宇
邹圣公
张晓光
陆凡凡
陈洋
王涵
徐新志
《中国机械工程》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部