目前的群智能疏散模型多仅考虑单一的经典的群体智能,不足以描述复杂的群体疏散行为特征,且鲜有考虑人群混乱程度对人群疏散的影响。为研究描述多种群体疏散行为的群智能疏散模型,综合使用多种群智能算法,并考虑了人群混乱程度对疏散的...目前的群智能疏散模型多仅考虑单一的经典的群体智能,不足以描述复杂的群体疏散行为特征,且鲜有考虑人群混乱程度对人群疏散的影响。为研究描述多种群体疏散行为的群智能疏散模型,综合使用多种群智能算法,并考虑了人群混乱程度对疏散的影响,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。首先,采用DBSCAN(density-based spatial clustering of applications with noise)算法进行群组划分。然后,将人群分为群组引导者、群组成员和离散人员3类,并针对每类人群的特点,基于蝙蝠算法描述群组引导者,基于人工蜂群算法描述群组成员,基于粒子群算法描述离散人员。最后,引入定量描述人群混乱程度的疏散熵对群组引导者进行位置修正,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。仿真结果表明,该模型可以模拟群组疏散,比较符合真实的群组疏散形状,以群组形式疏散一定程度提高了疏散效率;同时,引入疏散熵进行修正后,群组引导者可以引导群组成员避开前方混乱区域,避免了人群过度集中,增强了疏散的安全性与快速性。展开更多
文摘目前的群智能疏散模型多仅考虑单一的经典的群体智能,不足以描述复杂的群体疏散行为特征,且鲜有考虑人群混乱程度对人群疏散的影响。为研究描述多种群体疏散行为的群智能疏散模型,综合使用多种群智能算法,并考虑了人群混乱程度对疏散的影响,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。首先,采用DBSCAN(density-based spatial clustering of applications with noise)算法进行群组划分。然后,将人群分为群组引导者、群组成员和离散人员3类,并针对每类人群的特点,基于蝙蝠算法描述群组引导者,基于人工蜂群算法描述群组成员,基于粒子群算法描述离散人员。最后,引入定量描述人群混乱程度的疏散熵对群组引导者进行位置修正,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。仿真结果表明,该模型可以模拟群组疏散,比较符合真实的群组疏散形状,以群组形式疏散一定程度提高了疏散效率;同时,引入疏散熵进行修正后,群组引导者可以引导群组成员避开前方混乱区域,避免了人群过度集中,增强了疏散的安全性与快速性。