本文研究含有n 个滞量的三维微分差分方程组x(t)=sum from i=1 to ∞(1/i)f[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)]y(t)=sum from i=1 to ∞(1/i)g[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)](τ_i>0)z(t)=sum from i=...本文研究含有n 个滞量的三维微分差分方程组x(t)=sum from i=1 to ∞(1/i)f[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)]y(t)=sum from i=1 to ∞(1/i)g[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)](τ_i>0)z(t)=sum from i=1 to ∞(1/i)h[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)]周期解的存在性,给出了方程组周期解周期的取值范围.推广并改进了文[1]的结果.展开更多
文摘本文研究含有n 个滞量的三维微分差分方程组x(t)=sum from i=1 to ∞(1/i)f[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)]y(t)=sum from i=1 to ∞(1/i)g[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)](τ_i>0)z(t)=sum from i=1 to ∞(1/i)h[x(t),x(t-τ_i),y(t),y(t-τ_i),z(t),z(t-τ_i)]周期解的存在性,给出了方程组周期解周期的取值范围.推广并改进了文[1]的结果.