期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的内核恶意程序检测研究与实现
被引量:
6
1
作者
田东海
魏行
+3 位作者
张博
郁裕磊
李家硕
马锐
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第12期1295-1301,共7页
随着计算机科学的发展,世界对计算机的依赖越来越强,计算机安全也越来越重要,恶意代码是计算机安全面临的最大敌人.针对传统的恶意代码检测和分析技术在现在已经无法满足需求的问题,提出使用机器学习并应用新的分类特征来识别恶意程序,...
随着计算机科学的发展,世界对计算机的依赖越来越强,计算机安全也越来越重要,恶意代码是计算机安全面临的最大敌人.针对传统的恶意代码检测和分析技术在现在已经无法满足需求的问题,提出使用机器学习并应用新的分类特征来识别恶意程序,并且对他们进行初级的家族分类,指出以往机器学习在恶意代码检测和分类上的不足,筛选出更好的区分特征.首先使用了n-gram算法来优化恶意代码反汇编代码中的操作码特征,然后使用词袋模型和TF-IDF算法优化API调用特征,最后编程实现模型并使用数据集进行了模型的训练和测试.实验中使用决策树算法的模型的分类准确率上达到了87.41%,使用随机森林算法的模型的分类准确率上达到了90.06%,实验结果表明提出的特征相比以往在恶意代码检测分类上应用的特征有着更好的效果.
展开更多
关键词
恶意代码分类
随机森林
决策树
操作码
API
下载PDF
职称材料
题名
基于机器学习的内核恶意程序检测研究与实现
被引量:
6
1
作者
田东海
魏行
张博
郁裕磊
李家硕
马锐
机构
北京理工大学计算机学院
山西省军民融合软件工程技术研究中心
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第12期1295-1301,共7页
基金
国家重点研发计划资助项目(2016QY07X1404)
国家自然科学基金资助项目(61602035)
山西省军民融合软件工程技术研究中心开放基金资助项目。
文摘
随着计算机科学的发展,世界对计算机的依赖越来越强,计算机安全也越来越重要,恶意代码是计算机安全面临的最大敌人.针对传统的恶意代码检测和分析技术在现在已经无法满足需求的问题,提出使用机器学习并应用新的分类特征来识别恶意程序,并且对他们进行初级的家族分类,指出以往机器学习在恶意代码检测和分类上的不足,筛选出更好的区分特征.首先使用了n-gram算法来优化恶意代码反汇编代码中的操作码特征,然后使用词袋模型和TF-IDF算法优化API调用特征,最后编程实现模型并使用数据集进行了模型的训练和测试.实验中使用决策树算法的模型的分类准确率上达到了87.41%,使用随机森林算法的模型的分类准确率上达到了90.06%,实验结果表明提出的特征相比以往在恶意代码检测分类上应用的特征有着更好的效果.
关键词
恶意代码分类
随机森林
决策树
操作码
API
Keywords
malicious code classification
random forest
decision tree
opcode
API
分类号
TP309.5 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的内核恶意程序检测研究与实现
田东海
魏行
张博
郁裕磊
李家硕
马锐
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部