As secondary mineral resources, diatomite tailings(DT) got from the Linjiang region of China were prepared and characterized by SEM, XRF and XRD. Mono-factor experiments were carried out to investigate the effects o...As secondary mineral resources, diatomite tailings(DT) got from the Linjiang region of China were prepared and characterized by SEM, XRF and XRD. Mono-factor experiments were carried out to investigate the effects of the operation factor, including contact time, adsorbent concentration, initial p H value of the dye solutions, adsorption temperature and initial concentration of cationic Red X-GRL(X-GRL) on the adsorption of X-GRL. The adsorption kinetics, isotherms, thermodynamics and mechanisms for X-GRL were also studied. It was efficient for DT to adsorb X-GRL from aqueous solutions, and it was even discovered to have higher adsorptivity for X-GRL than diatomite concentrate(DC) in our previous test. The adsorption processes fit very well with the pseudo-second-order model and the Langmuir isotherm equation. In addition, various thermodynamic parameters, such as standard Gibbs free energy(ΔG°), standard enthalpy(ΔH°) and standard entropy(ΔS°) have been calculated. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic. The main driving forces of the physical adsorption on DT are electrostatic attraction. The reason why DT showed higher adsorptivity for X-GRL than DC was that there were more clay mineral particles within, which has a remarkable ability of dye adsorption due to its high surface area. DT as a cheap absorbent for X-GRL removal would replace or partially replace the activated carbon.展开更多
The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of t...The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.展开更多
基金Funded by the Key Science and Technology Support Programs(No.2011BAB03B07)of the Ministry of Science and Technology of China
文摘As secondary mineral resources, diatomite tailings(DT) got from the Linjiang region of China were prepared and characterized by SEM, XRF and XRD. Mono-factor experiments were carried out to investigate the effects of the operation factor, including contact time, adsorbent concentration, initial p H value of the dye solutions, adsorption temperature and initial concentration of cationic Red X-GRL(X-GRL) on the adsorption of X-GRL. The adsorption kinetics, isotherms, thermodynamics and mechanisms for X-GRL were also studied. It was efficient for DT to adsorb X-GRL from aqueous solutions, and it was even discovered to have higher adsorptivity for X-GRL than diatomite concentrate(DC) in our previous test. The adsorption processes fit very well with the pseudo-second-order model and the Langmuir isotherm equation. In addition, various thermodynamic parameters, such as standard Gibbs free energy(ΔG°), standard enthalpy(ΔH°) and standard entropy(ΔS°) have been calculated. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic. The main driving forces of the physical adsorption on DT are electrostatic attraction. The reason why DT showed higher adsorptivity for X-GRL than DC was that there were more clay mineral particles within, which has a remarkable ability of dye adsorption due to its high surface area. DT as a cheap absorbent for X-GRL removal would replace or partially replace the activated carbon.
基金financial support from the National Natural Science Foundation of China(Nos.U2067201,52204300)the National 111 Project,China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0297).
文摘The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.