期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
1
作者 辛睿 王亚祺 +6 位作者 房泽 郑凤基 高雯 付大石 史国庆 刘建一 张永成 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期81-88,共8页
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce... Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs. 展开更多
关键词 Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)ceramic physics-embedded machine learning piezoelectric coefficient Curie temperature
下载PDF
人血清载脂蛋白测定方法及意义
2
作者 郑凤基 韩晓玲 《工企医刊》 1993年第3期54-55,共2页
关键词 人血清 载脂蛋白 测定
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部