期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Stacking算法实现信贷不平衡数据分类
被引量:
1
1
作者
郑利沙
黄浩
《数据挖掘》
2020年第4期254-260,共7页
随着大数据技术在应用层面的日渐普及,机器学习、深度学习相关算法在金融风控行业的应用得到了积极的探索。本文基于开源的信用卡数据(该数据具有样本比例极度不平衡的特点),比较不同采样方法对类别不平衡数据分类结果的影响,并应用集...
随着大数据技术在应用层面的日渐普及,机器学习、深度学习相关算法在金融风控行业的应用得到了积极的探索。本文基于开源的信用卡数据(该数据具有样本比例极度不平衡的特点),比较不同采样方法对类别不平衡数据分类结果的影响,并应用集成学习算法Stacking融合多个基分类器训练数据,得到更为稳健的分类模型,有效避免了过拟合现象的发生。
展开更多
关键词
样本不平衡数据
集成学习
STACKING
下载PDF
职称材料
题名
基于Stacking算法实现信贷不平衡数据分类
被引量:
1
1
作者
郑利沙
黄浩
机构
对外经济贸易大学
出处
《数据挖掘》
2020年第4期254-260,共7页
文摘
随着大数据技术在应用层面的日渐普及,机器学习、深度学习相关算法在金融风控行业的应用得到了积极的探索。本文基于开源的信用卡数据(该数据具有样本比例极度不平衡的特点),比较不同采样方法对类别不平衡数据分类结果的影响,并应用集成学习算法Stacking融合多个基分类器训练数据,得到更为稳健的分类模型,有效避免了过拟合现象的发生。
关键词
样本不平衡数据
集成学习
STACKING
Keywords
Sample Unbalanced Data
Integration Learning
Stacking
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Stacking算法实现信贷不平衡数据分类
郑利沙
黄浩
《数据挖掘》
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部