We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength...We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers.展开更多
Bose–Einstein condensates(BEC)of sodium atoms are transferred into one-dimensional(1D)optical lattice potentials,formed by two laser beams with a wavelength of 1064 nm,in a shallow optical trap.The phase coherence of...Bose–Einstein condensates(BEC)of sodium atoms are transferred into one-dimensional(1D)optical lattice potentials,formed by two laser beams with a wavelength of 1064 nm,in a shallow optical trap.The phase coherence of the condensate in the lattice potential is studied by changing the lattice depth.A qualitative change in behavior of the BEC is observed at a lattice depth of~13.7Er,where the quantum gas undergoes a transition from a superfluid state to a state that lacks well-to-well phase coherence.展开更多
We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and ...We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and phase space density are experimentally investigated.A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers.In a general estimation,an optimal value for each beam with a power of 9 W from the fiber laser is achieved.Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose–Einstein condensation with an optical dipole trap.展开更多
We develop a research of spin currents in a^(23)Na spinor Bose–Einstein condensate(BEC)by applying a magnetic field gradient.The spin current is successfully induced by the spin-dependent force arising from the magne...We develop a research of spin currents in a^(23)Na spinor Bose–Einstein condensate(BEC)by applying a magnetic field gradient.The spin current is successfully induced by the spin-dependent force arising from the magnetic field gradient.The dynamics of the spin components under the magnetic force is investigated.The study is promising to be extended to produce a longer spin-coherence and to enhance the sensitivity of the spin-mixing interferometry in a spinor BEC.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921603)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT13076)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91436108)the National Natural Science Foundation of China(Grant Nos.61378014,61308023,61378015,and 11434007)the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(Grant No.J1103210)the New Teacher Fund of the Ministry of Education of China(Grant No.20131401120012)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.2013021005-1)
文摘We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers.
基金the National Key Research and Development Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.62020106014,62175140,61901249,92165106,and 12104276)+3 种基金PCSIRT(Grant No.IRT-17R70)the 111 Project(Grant No.D18001)the Applied Basic Research Project of Shanxi Province,China(Grant Nos.201901D211191 and 201901D211188)the Shanxi 1331 KSC,and the Collaborative Grant by the Russian Foundation for Basic Research and NNSF of China(Grant No.62011530047 and Grant No.2053-53025 in the RFBR Classifcation)。
文摘Bose–Einstein condensates(BEC)of sodium atoms are transferred into one-dimensional(1D)optical lattice potentials,formed by two laser beams with a wavelength of 1064 nm,in a shallow optical trap.The phase coherence of the condensate in the lattice potential is studied by changing the lattice depth.A qualitative change in behavior of the BEC is observed at a lattice depth of~13.7Er,where the quantum gas undergoes a transition from a superfluid state to a state that lacks well-to-well phase coherence.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61722507,61675121,61705123,62020106014,and 62011530047)+4 种基金the PCSIRT(Grant No.IRT-17R70)the 111 Project(Grant No.D18001)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)the Applied Basic Research Project of Shanxi Province,China(Grant Nos.201801D221004,201901D211191,and 201901D211188)the Shanxi 1331 KSC.
文摘We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and phase space density are experimentally investigated.A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers.In a general estimation,an optimal value for each beam with a power of 9 W from the fiber laser is achieved.Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose–Einstein condensation with an optical dipole trap.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.62020106014,62175140,61901249,92165106,12104276,and 62011530047)+4 种基金PCSIRT(Grant No.IRT17R70)the Educational Reform and Innovation Project of Higher Education in Shanxi Province,China(Grant Nos.Z20220001 and Z20220013)111 Project(Grant No.D18001)the Applied Basic Research Project of Shanxi Province(Grant Nos.201901D211191 and 201901D211188)the Shanxi 1331 KSC。
文摘We develop a research of spin currents in a^(23)Na spinor Bose–Einstein condensate(BEC)by applying a magnetic field gradient.The spin current is successfully induced by the spin-dependent force arising from the magnetic field gradient.The dynamics of the spin components under the magnetic force is investigated.The study is promising to be extended to produce a longer spin-coherence and to enhance the sensitivity of the spin-mixing interferometry in a spinor BEC.