期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ConvNeXt的北京地区红外相机野生动物图像识别改进模型构建
1
作者 齐建东 郑尚姿 +1 位作者 陈子仪 马鐘添 《林业科学》 EI CAS CSCD 北大核心 2024年第8期33-45,共13页
【目的】针对红外相机拍摄的野生动物图像数据量大、无效图像占比多、图像背景复杂等问题,提出一种可对图像进行自动、高准确率识别的模型,为生物多样性研究和野生动物保护工作提供更高效的支持。【方法】收集整理近4年来北京园林绿化... 【目的】针对红外相机拍摄的野生动物图像数据量大、无效图像占比多、图像背景复杂等问题,提出一种可对图像进行自动、高准确率识别的模型,为生物多样性研究和野生动物保护工作提供更高效的支持。【方法】收集整理近4年来北京园林绿化生态系统监测网络各站点红外相机拍摄的约5 TB图像数据,对其手工标注并进行数据增强后自建10类共4234张图像数据集。基于ConvNeXt卷积神经网络,结合北京地区野生动物图像数据集特点,设计BSGG-ConvNeXt模型,使用BlurPool、SENet、全局响应归一化层(GRN)、GCNet提升模型识别能力,并在自建数据集上探究训练策略对ConvNeXt网络识别准确率的影响,通过与其他经典模型比较,明确BSGG-ConvNeXt模型的优势。利用公开的红外野生动物Snapshot Serengeti(SS)数据集和Caltech Camera Traps(CCT)数据集,验证模型的泛化能力。【结果】以ConvNeXt的ConvNeXt-T网络尺寸模型为例,其在自建数据集中的准确率为74.13%,乘加累积操作数(MACs)为4.47×10^(9)。应用不同改进方案发现,使用BlurPool后准确率提升2.2%,MACs降至1.07×10^(9);使用SENet后准确率提升3.2%;使用GRN并删掉缩放层后准确率升至87.18%,参数数量增至27.88×10^(6);使用GCNet后在不增大计算量的情况下准确率升至75.44%,但参数数量增至28.25×10^(6)。将上述改进方案结合得到的BSGGConvNeXt应用于ConvNeXt-T模型获得BSGG-ConvNeXt-T模型,参数数量虽有少量增多,但MACs降为1.07×10^(9),模型准确率升至83.63%,高于原模型。使用预训练权重后的BSGG-ConvNeXt-T模型准确率可达94.07%,高于ResNet-50(76.39%)、ResNeXt-50(87.60%)、MobileViT(90.00%)、DenseNet(87.66%)、RegNet(69.90%)、ConvNeXtv2(91.93%)、SwinTransformer的(86.23%)和MobileOne(71.53%),将BSGG-ConvNeXt模型应用于4种不同网络尺寸的ConvNeXt模型后,在自建数据集中的表现均优于未改进模型。BSGG-ConvNeXt模型在SS数据集中的识别准确率达50.28%,在CCT数据集中的识别准确率达56.15%,均高于原模型的准确率。【结论】BSGG-ConvNeXt模型识别红外相机拍摄的野生动物图像准确率更高,在自建、公开的野生动物红外图像数据集上均有较好表现,且具有一定泛化能力。 展开更多
关键词 野生动物 图像识别 深度学习 卷积神经网络 ConvNeXt
下载PDF
基于YOLOv7的红外相机野生动物图像筛选
2
作者 齐建东 马鐘添 郑尚姿 《北京林业大学学报》 CAS CSCD 北大核心 2024年第2期143-154,共12页
【目的】野外环境通常植被繁茂、树木杂乱,且受环境、天气、光照等因素影响,红外相机易误触发拍摄,从而捕获大量废片,需要耗费大量人力进行筛选。为解决此类问题,本研究以YOLOv7模型为基础,对其进行轻量化改进,以实现对废片的自动筛选... 【目的】野外环境通常植被繁茂、树木杂乱,且受环境、天气、光照等因素影响,红外相机易误触发拍摄,从而捕获大量废片,需要耗费大量人力进行筛选。为解决此类问题,本研究以YOLOv7模型为基础,对其进行轻量化改进,以实现对废片的自动筛选。【方法】本研究构建了北京密云雾灵山自然保护区2014—2015年期间采集到的2172张野生动物图像数据集,并对图像中出现的动物进行位置标记。对YOLOv7网络使用不同方式进行改进:引入MicroBlock替换YOLOv7的主干网络,使用轻量化SPPCSPC结构降低模型参数量。采用SIoU损失、LNDown下采样、BiFPN提升模型检测动物的能力。使用YOLOv5-m、YOLOv5-l、Ghost-YOLOv5-l、YOLOv6、YOLOX-M、YOLOR-CSP模型,在含有1万张图像的Snapshot Serengeti相机陷阱图像子数据集上进行训练和验证,对比本文模型对野生动物图像的筛选效果。利用迁移学习训练自建野生动物数据集,测试冻结不同层数的训练效果。【结果】基于YOLOv7的改进模型推理时间降低了14.3%,每秒浮点运算次数FLOPS降低了33.5%,参数量减少了17.8%,误检测方面也优于YOLOv7模型。与其他模型进行对比,改进后的YOLOv7虽未在所有指标中均达到最优,但在检测时间与精度上达到了更好的平衡。在自建数据集中使用未冻结权重方式微调效果最优,平均精度比未使用迁移学习模型提高了12.6%。【结论】本研究为密云地区野生动物监测网络提供了更快速、准确的筛选方案。 展开更多
关键词 野生动物图像 图像筛选 深度学习 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部