ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特...ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特征匹配的方法,以解决特征匹配时光照强度鲁棒性不足的问题。通过光束平差法(bundle adjustment)进行位姿优化后,基于贝叶斯滤波模型,根据当前场景构建视觉字典以完成回环检测,提高SLAM算法精度。实验结果表明,相比ORB-SLAM算法,在保证实时性不变的情况下,本文算法精度与光照强度鲁棒性有明显提升。展开更多
文摘ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特征匹配的方法,以解决特征匹配时光照强度鲁棒性不足的问题。通过光束平差法(bundle adjustment)进行位姿优化后,基于贝叶斯滤波模型,根据当前场景构建视觉字典以完成回环检测,提高SLAM算法精度。实验结果表明,相比ORB-SLAM算法,在保证实时性不变的情况下,本文算法精度与光照强度鲁棒性有明显提升。