目的超声图像斑点噪声会影响诊断的准确性和可靠性。通过分析超声图像斑点噪声统计模型,结合非局部均值滤波算法,提出一种基于超声斑点噪声模型的改进权值非局部均值(NLM)滤波算法。方法算法针对超声图像灰度信息对图像进行预处理,利用...目的超声图像斑点噪声会影响诊断的准确性和可靠性。通过分析超声图像斑点噪声统计模型,结合非局部均值滤波算法,提出一种基于超声斑点噪声模型的改进权值非局部均值(NLM)滤波算法。方法算法针对超声图像灰度信息对图像进行预处理,利用超声图像斑点噪声模型改进传统NLM算法的权值计算函数,基于图像特征确定最优采样间隔进行下采样,利用改进后的权值计算函数对图像进行NLM去噪处理。结果分别采用人工合成与真实超声图像对本文算法性能进行测试,并与传统非局部均值滤波算法、非局部总变分(NLTV)等算法进行去噪效果比较,同时采用均方误差、峰值信噪比和平均结构相似性作为滤波算法性能的客观评价指标。本文算法能快速完成超声图像的去噪处理,峰值信噪比较其他算法可以提高0.2 d B以上,可以降低均方误差,提高平均结构相似性,缩短处理时间,并得到较好的图像质量和视觉效果。结论根据超声图像斑点噪声模型对NLM算法的权值计算函数进行优化,使得NLM图像滤波算法能更好地适用于超声图像的去噪,基于超声斑点噪声模型的改进权值NLM算法相较于其他算法,滤波效果更佳,适合超声图像去噪。展开更多
文摘目的超声图像斑点噪声会影响诊断的准确性和可靠性。通过分析超声图像斑点噪声统计模型,结合非局部均值滤波算法,提出一种基于超声斑点噪声模型的改进权值非局部均值(NLM)滤波算法。方法算法针对超声图像灰度信息对图像进行预处理,利用超声图像斑点噪声模型改进传统NLM算法的权值计算函数,基于图像特征确定最优采样间隔进行下采样,利用改进后的权值计算函数对图像进行NLM去噪处理。结果分别采用人工合成与真实超声图像对本文算法性能进行测试,并与传统非局部均值滤波算法、非局部总变分(NLTV)等算法进行去噪效果比较,同时采用均方误差、峰值信噪比和平均结构相似性作为滤波算法性能的客观评价指标。本文算法能快速完成超声图像的去噪处理,峰值信噪比较其他算法可以提高0.2 d B以上,可以降低均方误差,提高平均结构相似性,缩短处理时间,并得到较好的图像质量和视觉效果。结论根据超声图像斑点噪声模型对NLM算法的权值计算函数进行优化,使得NLM图像滤波算法能更好地适用于超声图像的去噪,基于超声斑点噪声模型的改进权值NLM算法相较于其他算法,滤波效果更佳,适合超声图像去噪。