期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于局部-全局一致性学习的弱监督人手分割
1
作者 谢志坚 李寅霖 郑碎武 《计算机应用与软件》 北大核心 2019年第1期204-210,319,共8页
随着可穿戴设备的日益普及,人的上肢行为数据急剧增长,而自然场景下的人手分割研究较少。针对现有的算法对手工设计特征、像素级标签、设备、环境等的依赖,造成的精度有限或设备、人工标注成本较高的问题,提出一种弱监督人手分割算法,... 随着可穿戴设备的日益普及,人的上肢行为数据急剧增长,而自然场景下的人手分割研究较少。针对现有的算法对手工设计特征、像素级标签、设备、环境等的依赖,造成的精度有限或设备、人工标注成本较高的问题,提出一种弱监督人手分割算法,并将其应用到人手操作行为分割中。在像素级标签的源数据集上,利用全卷积神经网络(FCN)预训练。在只有类别标签的目标数据集上,实现基于超像素的局部-全局一致性学习的分割优化,进而实现FCN网络训练和分割优化的交替迭代。使用全连接条件随机场(CRF)进行后处理。提出基于边界框的弱监督分割,以及半监督分割方法。与其他方法的对比实验表明,该方法具有较高的召回率和区域交叠率。 展开更多
关键词 人手分割 深度全卷积神经网络 弱监督学习 条件随机场
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部