现有的RDF数据分布式并行压缩编码算法均未考虑结合本体文件,导致编码后的RDF数据没有表示任何语义信息,不利于分布式查询或推理。针对这些问题,提出SCOM(Semantic Coding with Ontology on MapReduce)算法在分布式MapReduce下完成RDF...现有的RDF数据分布式并行压缩编码算法均未考虑结合本体文件,导致编码后的RDF数据没有表示任何语义信息,不利于分布式查询或推理。针对这些问题,提出SCOM(Semantic Coding with Ontology on MapReduce)算法在分布式MapReduce下完成RDF数据的语义并行编码。该算法首先结合RDF数据本体,构建类关系和属性关系模型;在三元组项分类与过滤之后,对三元组项进行编码并生成字典表,最终完成RDF数据带有语义信息且具有规律性的编码。此外,SCOM算法能够很容易地将编码后的RDF数据文件恢复为原始文件。实验表明,SCOM算法能够高效地实现大规模数据的分布式并行编码。展开更多
文摘现有的RDF数据分布式并行压缩编码算法均未考虑结合本体文件,导致编码后的RDF数据没有表示任何语义信息,不利于分布式查询或推理。针对这些问题,提出SCOM(Semantic Coding with Ontology on MapReduce)算法在分布式MapReduce下完成RDF数据的语义并行编码。该算法首先结合RDF数据本体,构建类关系和属性关系模型;在三元组项分类与过滤之后,对三元组项进行编码并生成字典表,最终完成RDF数据带有语义信息且具有规律性的编码。此外,SCOM算法能够很容易地将编码后的RDF数据文件恢复为原始文件。实验表明,SCOM算法能够高效地实现大规模数据的分布式并行编码。