The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bu...The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material,which could be benefited from pulsed neutron source.Here we build a Bragg-edge imaging system on the General Purpose Powder Diffractometer at the China Spallation Neutron Source.The residual strain mapping of a bent Q235 ferrite steel sample has been achieved with a spectral resolution of 0.15%by the time-of-flight neutron Bragg-edge imaging on this system.The results show its great potential applications in materials science and engineering.展开更多
The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is...The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0701903 and 2016YFA0401502)the National Natural Science Foundation of China(Grant No.12041202)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017023)the Guangdong Natural Science Foundation,China(Grant No.2016A030313129)the Department of Science and Technology of Guangdong Province under grant project of energy-resolved neutron imaging instrument.
文摘The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material,which could be benefited from pulsed neutron source.Here we build a Bragg-edge imaging system on the General Purpose Powder Diffractometer at the China Spallation Neutron Source.The residual strain mapping of a bent Q235 ferrite steel sample has been achieved with a spectral resolution of 0.15%by the time-of-flight neutron Bragg-edge imaging on this system.The results show its great potential applications in materials science and engineering.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0702702,2019YFA0704904,2018YFA0305704,2017YFA0206300,2017YFA0303601,and 2016YFB0700903)the National Natural Science Foundation of China(Grant Nos.U1832219,51531008,51771223,51590880,51971240,11674378,11934016,and 11921004)the Key Program and Strategic Priority Research Program(B)of the Chinese Academy of Sciences。
文摘The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.