期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于非凸正则化与稀疏成分分析的复合故障诊断方法
1
作者 郝彦嵩 王华庆 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期97-105,共9页
用于解决多故障问题的复合故障诊断技术是企业设备状态监测与故障诊断的关键环节之一。大型机械和设备群组在经过较长时间的服役期后,由于经常在高温、大载荷等工况条件比较复杂的环境下运行,核心部件难免发生由不同损伤组成的复合故障... 用于解决多故障问题的复合故障诊断技术是企业设备状态监测与故障诊断的关键环节之一。大型机械和设备群组在经过较长时间的服役期后,由于经常在高温、大载荷等工况条件比较复杂的环境下运行,核心部件难免发生由不同损伤组成的复合故障从而使得设备故障的诊断困难。为解决上述问题,提出一种新型的基于非凸正则化与稀疏成分分析的复合故障诊断方法,通过构造非凸惩罚函数以提高信号的稀疏性,并确保目标函数的全局凸性,从而尽可能地提高稀疏成分分析方法的准确度。该方法可以在预先不知道故障源数量的情况下,通过构建一个稀疏优化框架以确保诊断结果的准确性,从而解决滚动轴承的多故障诊断问题。通过仿真实验对所提方法进行验证,基于非凸正则化的均方根误差(RMSE)最优值小于0.5,故障特征更为明显,优于传统方法。以900 r/min和1 300 r/min的轴承故障实验为例,外圈、内圈、滚动体特征频率均可准确识别,表明所提方法可以有效进行复合故障的诊断。 展开更多
关键词 复合故障诊断 稀疏成分分析 凸优化 非凸正则化
下载PDF
双约束非负矩阵分解的复合故障信号分离方法 被引量:6
2
作者 王华庆 王梦阳 +3 位作者 宋浏阳 郝彦嵩 任帮月 董方 《振动工程学报》 EI CSCD 北大核心 2020年第3期590-596,共7页
为了分离复合故障振动信号,提出了一种采用双约束非负矩阵分解算法的信号分离方法。首先对原始振动信号采用短时傅里叶变换,通过时频分布信息来描述信号的局部故障特征;其次在传统非负矩阵分解算法中引入β散度约束与行列式约束,构成双... 为了分离复合故障振动信号,提出了一种采用双约束非负矩阵分解算法的信号分离方法。首先对原始振动信号采用短时傅里叶变换,通过时频分布信息来描述信号的局部故障特征;其次在传统非负矩阵分解算法中引入β散度约束与行列式约束,构成双约束非负矩阵分解算法,利用双约束非负矩阵分解算法实现数据的降维,并从低维空间中分离出特征分量;然后通过特征分量重构出时域波形,同时提出加权峰值因子的影响参数筛选重构信号;最后将筛选出的分离信号进行包络频谱分析,提取故障特征。仿真及轴承复合故障实验结果表明:所提出的方法可以有效分离并提取出外圈与滚动体冲击性特征,实现了轴承的复合故障诊断。 展开更多
关键词 故障诊断 轴承 非负矩阵分解算法 β散度约束 行列式约束
下载PDF
基于改进的稀疏度自适应振动数据修复方法 被引量:5
3
作者 谢馨 王华庆 +2 位作者 宋浏阳 李景乐 郝彦嵩 《振动与冲击》 EI CSCD 北大核心 2019年第16期261-266,共6页
基于压缩感知的数据重构方法已用于解决信号采集中受损数据的修复问题,该算法首先需要已知数据稀疏度,而振动信号的稀疏度通常难以确定,增加了数据修复的难度;稀疏度自适应匹配追踪算法(SAMP)无需预估信号稀疏度,可用于受损数据修复,但S... 基于压缩感知的数据重构方法已用于解决信号采集中受损数据的修复问题,该算法首先需要已知数据稀疏度,而振动信号的稀疏度通常难以确定,增加了数据修复的难度;稀疏度自适应匹配追踪算法(SAMP)无需预估信号稀疏度,可用于受损数据修复,但SAMP算法的修复结果受终止条件影响较大,导致修复精度不高且效率较低;为此提出了基于终止准则改进的稀疏度自适应数据修复方法。基于振动信号波形特征和先验知识,选择适当的字典矩阵实现信号稀疏化;以单位矩阵为基础,根据数据的缺失模型构造观测矩阵;为了避免传统SAMP算法终止系数选取不当,导致支撑集引入错误原子的问题,采用改进的SAMP算法重构出完整信号,实现受损数据修复。通过仿真信号及轴承实测信号验证了方法有效性,且改进的SAMP算法在重构精度和运算效率上均有所提高;此外,改进的SAMP算法重构效果优于正交匹配追踪(OMP)与正则化正交匹配追踪(ROMP)。 展开更多
关键词 压缩感知(CS) 稀疏度自适应 终止准则 振动数据修复
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部