近年来,推荐系统的实用价值越来越高,良好的推荐算法可以给用户提供好的用户体验效果,然而随着信息化的不断增长,信息过载问题变得越来越突出,用户懒于对物品评分已经成为习惯.怎样向这些特定用户群体提供好的推荐算法、提高推荐质量已...近年来,推荐系统的实用价值越来越高,良好的推荐算法可以给用户提供好的用户体验效果,然而随着信息化的不断增长,信息过载问题变得越来越突出,用户懒于对物品评分已经成为习惯.怎样向这些特定用户群体提供好的推荐算法、提高推荐质量已经成为现在的热门问题.为了更好地推动推荐系统的发展,解决这些特定用户群体的评分稀疏问题,提出一种受约束的贝叶斯概率矩阵分解算法.该算法针对特定的评分稀疏用户引入一种潜在的相似度约束矩阵来影响用户的特征向量,并结合最大后验概率(Maximum A Posteriori,MAP)估计和蒙特卡罗采样(Markov Chain Monte Carlo,MCMC)推断进行概率矩阵分解(Probabilistic Matrix Factorization,PMF),自动调整模型正则化参数,最后在数据集上进行测试评估和对比实验.实验结果表明,该算法在预测性能上得到很大提升,并且在解决特定用户的评分稀疏问题上效果更佳.展开更多
为解决社会化推荐算法推荐效果严重依赖用户信任数据的问题,提出一种融合信任相似度的偏置概率矩阵分解算法(bias probability matrix factorization algorithm fused with trust similarity,TTSPMF)。该算法引入稀疏性更低的信任相似...为解决社会化推荐算法推荐效果严重依赖用户信任数据的问题,提出一种融合信任相似度的偏置概率矩阵分解算法(bias probability matrix factorization algorithm fused with trust similarity,TTSPMF)。该算法引入稀疏性更低的信任相似度网络,使用信任关系的相似性弥补用户信任数据的稀疏性。通过用户信任矩阵计算得出信任相似度矩阵,然后将信任相似度矩阵和用户信任矩阵共同进行矩阵分解,同时加入偏置项来表达用户和物品的偏好,从而更好地刻画用户和物品的特征,避免因用户或物品本身因素带来的评分偏差。使用概率矩阵分解模型融合信任矩阵和信任相似度矩阵并迭代求解,得到用户特征矩阵和物品特征矩阵。在多个数据集上的试验证明,在不同评价指标下,该算法的推荐准确度明显高于传统推荐算法,可以有效缓解数据稀疏带来的推荐效果差的问题。展开更多
文摘近年来,推荐系统的实用价值越来越高,良好的推荐算法可以给用户提供好的用户体验效果,然而随着信息化的不断增长,信息过载问题变得越来越突出,用户懒于对物品评分已经成为习惯.怎样向这些特定用户群体提供好的推荐算法、提高推荐质量已经成为现在的热门问题.为了更好地推动推荐系统的发展,解决这些特定用户群体的评分稀疏问题,提出一种受约束的贝叶斯概率矩阵分解算法.该算法针对特定的评分稀疏用户引入一种潜在的相似度约束矩阵来影响用户的特征向量,并结合最大后验概率(Maximum A Posteriori,MAP)估计和蒙特卡罗采样(Markov Chain Monte Carlo,MCMC)推断进行概率矩阵分解(Probabilistic Matrix Factorization,PMF),自动调整模型正则化参数,最后在数据集上进行测试评估和对比实验.实验结果表明,该算法在预测性能上得到很大提升,并且在解决特定用户的评分稀疏问题上效果更佳.
文摘为解决社会化推荐算法推荐效果严重依赖用户信任数据的问题,提出一种融合信任相似度的偏置概率矩阵分解算法(bias probability matrix factorization algorithm fused with trust similarity,TTSPMF)。该算法引入稀疏性更低的信任相似度网络,使用信任关系的相似性弥补用户信任数据的稀疏性。通过用户信任矩阵计算得出信任相似度矩阵,然后将信任相似度矩阵和用户信任矩阵共同进行矩阵分解,同时加入偏置项来表达用户和物品的偏好,从而更好地刻画用户和物品的特征,避免因用户或物品本身因素带来的评分偏差。使用概率矩阵分解模型融合信任矩阵和信任相似度矩阵并迭代求解,得到用户特征矩阵和物品特征矩阵。在多个数据集上的试验证明,在不同评价指标下,该算法的推荐准确度明显高于传统推荐算法,可以有效缓解数据稀疏带来的推荐效果差的问题。