期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多因素光照条件下高质量煤矸图像获取方法研究 被引量:3
1
作者 曹现刚 郝朋英 +3 位作者 王鹏 刘思颖 吴旭东 霍小泉 《煤炭科学技术》 CAS CSCD 北大核心 2023年第1期455-463,共9页
针对在线选煤过程中,光照条件不足引起煤矸表面特征成像质量差,煤矸识别率低下的问题,提出一种融合光源分布、色温、光照强度等多因素条件的新型高质量煤矸图像获取方法。首先,针对煤矸流实际洗选过程中光照条件的复杂性导致的光照不均... 针对在线选煤过程中,光照条件不足引起煤矸表面特征成像质量差,煤矸识别率低下的问题,提出一种融合光源分布、色温、光照强度等多因素条件的新型高质量煤矸图像获取方法。首先,针对煤矸流实际洗选过程中光照条件的复杂性导致的光照不均匀问题,基于九点取样法研究了不同入射角度对光照均匀度的影响,确定适用于煤流的最佳入射角度。然后,针对不同色温引起色彩还原性不同导致煤矸图像失真的问题,采用MSE、PSNR和SSIM等指标量化分析多样本单一种类煤矸图像失真情况,通过TOPSIS算法研究不同色温的光源对煤、矸石,以及混合煤矸石3种不同工况图像失真情况的影响,确定成像质量最优的色温。最后,考虑在线光照强度变化影响煤矸表面特征信息的表达,基于不同照度下煤矸表面特征响应曲线,建立曝光时间、输送带速度和环境光强的关联关系,量化表面区分度较大的照度区间,确定最佳光照条件。通过融合多因素光照条件下高质量图像获取方法建立煤矸识别系统,并对SSD和Faster-RCNN目标检测模型进行实验验证。结果表明:该方法在很大程度上提高了煤矸图像质量,煤矸识别准确率提高10.5%,为煤矸智能分选系统提供更为准确的数据支撑,对提高原煤入选率具有一定应用推广价值。 展开更多
关键词 选煤 照明技术 图像质量 TOPSIS法 深度学习 煤矸识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部