Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magne...Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.展开更多
The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonMity of the ferromagnetic resonance mode and o...The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonMity of the ferromagnetic resonance mode and other degenerate spin wave modes was broken by magnetic anisotropy, voids, second phase, surface defects, etc., which is important in analysis of ferromagnetic resonance linewidth. Direct fitting to linewidth with Gilbert damping is advisable only when the measured linewidth is a linear function of measuring frequency in a broad band measurement. We observe the nonlinear ferromagnetic resonance linewidth of Co2MnSi thin films with respect to measuring frequency in broad band measurement. Experimental data could be well fitted with the model including two-magnon scattering with no fixed parameters. The fitting results show that two-magnon scattering results in the nonlinear linewidth behavior, and the Gilbert damping factor is much smaller than reported ones, indicating that our Co2MnSi films are more suitable for the applications of spin transfer torque.展开更多
The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe...The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG(MYIG) can be rotated with respect to that of NiFe(MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current(σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.展开更多
Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of t...Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.展开更多
The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic in...The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents (σsc), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electro-chemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements.展开更多
Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the gi...Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.展开更多
Co2MnSi thin films are made by magnetron sputtering onto MgO (001) substrates. The crystalline quality is improved by increasing depositing temperature and/or annealing temperature. The sample deposited at 550℃ and...Co2MnSi thin films are made by magnetron sputtering onto MgO (001) substrates. The crystalline quality is improved by increasing depositing temperature and/or annealing temperature. The sample deposited at 550℃ and subsequently annealed at 550℃ (sample I) exhibits a pseudo-epitaxial growth with partially ordered L21 phase. Sample I shows a four-fold magnetic anisotropy, in addition to a relatively weak uniaxial anisotropy. The Gilbert damping factor of sample I is smaller than 0.001, much smaller than reported ones. The possible reasons responsible for the small Gilbert damping factor are discussed, including weak spin-orbit coupling, small density of states at Fermi level, and so on.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51901008)the National Key Research and Development Program of China (Grant No. 2021YFB3201800)。
文摘Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921502the National Natural Science Foundation of China under Grant Nos 11474184 and 11174183+4 种基金the Program for New Century Excellent Talents of China under Grant No NCET-10-0541the Scientific Research Foundation for Returned Overseas Chinese Scholars under Grant No B13029the Natural Science Foundation of Shandong Province under Grant No JQ201201the Doctorate Foundation of Shandong Province under Grant No BS2013CL042the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11204164
文摘The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonMity of the ferromagnetic resonance mode and other degenerate spin wave modes was broken by magnetic anisotropy, voids, second phase, surface defects, etc., which is important in analysis of ferromagnetic resonance linewidth. Direct fitting to linewidth with Gilbert damping is advisable only when the measured linewidth is a linear function of measuring frequency in a broad band measurement. We observe the nonlinear ferromagnetic resonance linewidth of Co2MnSi thin films with respect to measuring frequency in broad band measurement. Experimental data could be well fitted with the model including two-magnon scattering with no fixed parameters. The fitting results show that two-magnon scattering results in the nonlinear linewidth behavior, and the Gilbert damping factor is much smaller than reported ones, indicating that our Co2MnSi films are more suitable for the applications of spin transfer torque.
基金supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project,China(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG(MYIG) can be rotated with respect to that of NiFe(MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current(σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921502 and 2013CB922303)the National Natural Science Foundation of China(Grant Nos.11474184,116627805,and 11504203)+2 种基金the 111 Project(Grant No.B13029)Zhang Yin and Wang Xiangrong were supported by the Hong Kong RGC Grants(Grant Nos.16301816 and 605413)Wu Yong and Jiang Yong were supported by the National Natural Science Foundation of China(Grant No.51501007)
文摘Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project,China(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents (σsc), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electro-chemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11904017, 11974145, 51901008, and 12004024)Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020ZD28)+1 种基金platform from Qingdao Science and Technology Commissionthe Fundamental Research Funds for the Central Universities of China
文摘Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921502the National Natural Science Foundation of China under Grant Nos 11474184 and 11174183+3 种基金the 111 Project under Grant No B13029the Natural Science Foundation of Shandong Province under Grant No JQ201201the Doctorate Foundation of Shandong Province under Grant No BS2013CL042the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11204164
文摘Co2MnSi thin films are made by magnetron sputtering onto MgO (001) substrates. The crystalline quality is improved by increasing depositing temperature and/or annealing temperature. The sample deposited at 550℃ and subsequently annealed at 550℃ (sample I) exhibits a pseudo-epitaxial growth with partially ordered L21 phase. Sample I shows a four-fold magnetic anisotropy, in addition to a relatively weak uniaxial anisotropy. The Gilbert damping factor of sample I is smaller than 0.001, much smaller than reported ones. The possible reasons responsible for the small Gilbert damping factor are discussed, including weak spin-orbit coupling, small density of states at Fermi level, and so on.