期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于航拍视频构建风险指数的交织区拥堵识别方法 被引量:2
1
作者 李熙莹 梁靖茹 +2 位作者 张伟斌 郝腾龙 陈丽娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第2期494-505,共12页
为了实时识别快速路交织区拥堵瓶颈的形成及其诱发因素,基于无人机航拍视频构建车辆轨迹数据,提出一种融合交通流不稳定性分析的交织区拥堵识别方法。识别方法由车辆轨迹提取、扰动感知模型和拥堵风险指数构建3个阶段构成。首先,通过YOL... 为了实时识别快速路交织区拥堵瓶颈的形成及其诱发因素,基于无人机航拍视频构建车辆轨迹数据,提出一种融合交通流不稳定性分析的交织区拥堵识别方法。识别方法由车辆轨迹提取、扰动感知模型和拥堵风险指数构建3个阶段构成。首先,通过YOLOv4(You Only Look Once,Version 4)网络训练航拍小目标权重检测俯拍车辆,关联外观与运动特征以跟踪车辆轨迹,从而提取无人机航拍视频中的精细车辆轨迹。然后,通过提取车辆微观速度、变道、冲突信息建立车速扰动和变道交织扰动感知模型。最后,采用熵值法结合扰动信息与平均车速构建归一化的拥堵风险指数,根据交织流的拥堵风险指数识别拥堵。本文采集广州大桥数据进行案例分析与测试验证。研究结果表明:学习了小目标特征的网络在航拍场景测试的误检率和少检率均低于5%,所提取的车辆轨迹连续稳定;在交织区拥堵识别评价中,本文方法的F1值达到97.85%,明显优于基本参数识别方法,在各路段中具有较高的识别准确度和算法鲁棒性;相比平均速度指标,所提出的拥堵风险指数能够更精细灵敏地反映短时和局部的拥堵,并能够从平均车速、个体车速差异和变道交织3个维度中识别多种因素引起的交织区交通瓶颈。研究结果可为城市重点路段交通诱导与优化提供技术基础。 展开更多
关键词 智能交通 拥堵识别 快速路交织区 航拍视频检测 拥堵风险指数
下载PDF
考虑连锁冲突的城市公交车行车风险量化分析方法 被引量:2
2
作者 李熙莹 梁靖茹 郝腾龙 《交通信息与安全》 CSCD 北大核心 2022年第3期19-29,共11页
为了量化城市公交车给区域混合交通带来的安全风险,通过提取交通冲突数据并识别连锁冲突,研究了公交车行车风险的量化分析方法。在数据采集上,采用了航拍图像并基于YOLOv4网络学习航拍目标的外观特征,检测并跟踪航拍车辆,从而提取带精... 为了量化城市公交车给区域混合交通带来的安全风险,通过提取交通冲突数据并识别连锁冲突,研究了公交车行车风险的量化分析方法。在数据采集上,采用了航拍图像并基于YOLOv4网络学习航拍目标的外观特征,检测并跟踪航拍车辆,从而提取带精细属性的车辆轨迹数据。在冲突识别上,将不同车道上可能发生横向碰撞的车辆对之间的相对位置作为约束条件,在跟驰模型的基础上补充了匹配相邻车道上车辆对的动态关系,从而将经典碰撞时间(TTC)模型扩展至可同时识别侧向冲突的二维TTC模型;基于车辆刺激-反应理论标定每个冲突车辆对区域交通造成连续干扰的时空范围,根据干扰范围的动态变化建立冲突间的作用关系并形成时序性的冲突树模型,从而识别连锁冲突并追溯连续风险形成的因果过程。在风险研究上,从3个方面量化不同状态下城市公交车的行车风险:①基于二维TTC模型解析冲突频率;②在此基础上结合累积频率法解析冲突严重性;③通过连锁冲突比例及冲突树长度解析冲突聚集的概率和范围大小。采集广州大桥路段航拍视频进行实验研究,结果表明:城市公交车在拥堵常发路段不仅冲突风险高,且带有较高的冲突严重性和区域聚集性;拥堵流中公交车的冲突频率超过9次/(veh·min);公交车的严重冲突率为33.39%,远远高于小汽车的16.61%;公交车的区域连锁冲突发生率为30.75%,达到了小汽车(14.67%)的2倍。 展开更多
关键词 交通安全 城市公交车 交通安全风险分析 连锁冲突识别 交通冲突技术
下载PDF
提升预测框定位稳定性的视频目标检测 被引量:4
3
作者 郝腾龙 李熙莹 《中国图象图形学报》 CSCD 北大核心 2021年第1期113-122,共10页
目的目前视频目标检测(object detection from video)领域大量研究集中在提升预测框定位准确性,对于定位稳定性提升的研究则较少。然而,预测框定位稳定性对多目标跟踪、车辆行驶控制等算法具有重要影响,为提高预测框定位稳定性,本文提... 目的目前视频目标检测(object detection from video)领域大量研究集中在提升预测框定位准确性,对于定位稳定性提升的研究则较少。然而,预测框定位稳定性对多目标跟踪、车辆行驶控制等算法具有重要影响,为提高预测框定位稳定性,本文提出了一种扩张性非极大值抑制(expanded non-maximum suppression,ExpNMS)方法和帧间平滑策略(frame bounding box smooth,FBBS)。方法目标检测阶段使用YOLO(you only look once) v3神经网络,非极大值抑制阶段通过融合多个预测框信息得出结果,增强预测框在连续视频流中的稳定性。后续利用视频相邻帧信息关联的特点,对预测框进行平滑处理,进一步提高预测框定位稳定性。结果选用UA-DETRAC(University at Albany detection and tracking benchmark dataset)数据集进行分析实验,使用卡尔曼滤波多目标跟踪算法进行辅助验证。本文在MOT(multiple object tracking)评价指标基础上,设计了平均轨迹曲折度(average track-tortuosity,AT)来直观、量化地衡量预测框定位稳定性及跟踪轨迹的平滑度。实验结果表明,本文方法几乎不影响预测框定位准确性,且对定位稳定性有大幅改善,相应跟踪质量得到显著提升。测试视频的MOTA(multiple object tracking accuracy)提升6.0%、IDs(identity switches)减少16.8%,跟踪FP(false positives)类型错误下降45.83%,AT下降36.57%,m AP(mean average precision)仅下降0.07%。结论从非极大值抑制和前后帧信息关联两个角度设计相关策略,经实验验证,本文方法在基本不影响预测框定位准确性的前提下,可有效提升预测框定位稳定性。 展开更多
关键词 卷积神经网络 视频目标检测 预测框定位稳定性 非极大值抑制策略 相邻帧信息关联
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部