The rectification transport of a single vibration-driven self-propelled vehicle in a two-dimensional left–right asymmetric channel was experimentally investigated. The rectification efficiency of the vehicle moving f...The rectification transport of a single vibration-driven self-propelled vehicle in a two-dimensional left–right asymmetric channel was experimentally investigated. The rectification efficiency of the vehicle moving from the center to the exit was statistically obtained for the range of channel widths, inter-channel asymmetry degrees, and platform tilt angles.The trajectory of its movement was also analyzed. It was found that the structure of the channel provides the main influence. Different channel shapes lead to different ranges of unfavorable widths, and transport efficiency decreases when the asymmetry diminishes—the two channels converge. The addition of external gravity does not counteract the structural limitations, but only affects the probability of departure.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12075090)。
文摘The rectification transport of a single vibration-driven self-propelled vehicle in a two-dimensional left–right asymmetric channel was experimentally investigated. The rectification efficiency of the vehicle moving from the center to the exit was statistically obtained for the range of channel widths, inter-channel asymmetry degrees, and platform tilt angles.The trajectory of its movement was also analyzed. It was found that the structure of the channel provides the main influence. Different channel shapes lead to different ranges of unfavorable widths, and transport efficiency decreases when the asymmetry diminishes—the two channels converge. The addition of external gravity does not counteract the structural limitations, but only affects the probability of departure.