We report efficient generation of 671 nm red light based on quasi-phase-matched second harmonic generation of 1342 nm in LiNbO3 waveguides. The design method and fabrication process of the high-quality annealed proton...We report efficient generation of 671 nm red light based on quasi-phase-matched second harmonic generation of 1342 nm in LiNbO3 waveguides. The design method and fabrication process of the high-quality annealed protonexchanged periodically poled channel waveguides were presented. A continuous-wave 1.71 mW red light was obtained with a single-pass conversion efficiency of 47%·W-1·cm-2, which is 88% that of the theoretical value.While for 1 mW quasi-continuous-laser input, the corresponding peak power being 2 W, the conversion efficiency reached up to 60%. Our results indicate that the annealed proton-exchanged periodically poled LiNbO3 waveguide is promising for high-efficiency and low power consumption nonlinear generation of visible light.展开更多
基金supported by the National Key R&D Program of China (Nos. 2019YFA0705000 and2017YFA0303700)the National Natural Science of China(Nos. 11674171,91950206,11627810,and 51890861)+2 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation (No. BK20192001)the Key R&D Program of Guangdong Province (No. 2018B030329001)the Fundamental Research Funds for the Central Universities (No. 021314380177)。
文摘We report efficient generation of 671 nm red light based on quasi-phase-matched second harmonic generation of 1342 nm in LiNbO3 waveguides. The design method and fabrication process of the high-quality annealed protonexchanged periodically poled channel waveguides were presented. A continuous-wave 1.71 mW red light was obtained with a single-pass conversion efficiency of 47%·W-1·cm-2, which is 88% that of the theoretical value.While for 1 mW quasi-continuous-laser input, the corresponding peak power being 2 W, the conversion efficiency reached up to 60%. Our results indicate that the annealed proton-exchanged periodically poled LiNbO3 waveguide is promising for high-efficiency and low power consumption nonlinear generation of visible light.