在低碳背景下,含热电联产(Combined Heating And Power,CHP)及电转气(Power to Gas,P2G)技术的多能源微网系统可以实现多种能源清洁低碳化供应,提高能源综合利用效率。然而,风电强烈的随机性与波动性严重影响多能源微网运行的安全性与...在低碳背景下,含热电联产(Combined Heating And Power,CHP)及电转气(Power to Gas,P2G)技术的多能源微网系统可以实现多种能源清洁低碳化供应,提高能源综合利用效率。然而,风电强烈的随机性与波动性严重影响多能源微网运行的安全性与经济性。基于此,采用可调鲁棒优化方法应对风电出力不确定性;并根据P2G低碳特性和碳交易市场机制建立阶梯型碳交易模型,综合考虑常规机组的运行成本、电量交易成本、弃风惩罚成本以及碳交易成本,构建多能源微网日前双层可调鲁棒经济调度模型。最后,对系统不同场景的调度结果进行对比分析,结果表明:引入阶梯型碳价后,可以有效提升含P2G的热-电联产型多能源微网低碳运行的经济性,可调鲁棒方法能使多能源微网在经济性和保守性上得以平衡。展开更多
微网群电能交易可以提高多微网系统整体经济性,促进可再生能源消纳并缓解配电网运行压力.然而风电出力不确定性严重影响了单个微网运行调控行为,进而影响微网群电能交易的经济性和可靠性.同时,可再生能源出力不确定性和微网群规模的扩...微网群电能交易可以提高多微网系统整体经济性,促进可再生能源消纳并缓解配电网运行压力.然而风电出力不确定性严重影响了单个微网运行调控行为,进而影响微网群电能交易的经济性和可靠性.同时,可再生能源出力不确定性和微网群规模的扩大使传统集中式交易模式在处理微网群电能交易产生的海量、复杂、实时的微网数据时,存在交易信息不透明、可靠性低等问题.因此,考虑风电出力不确定性,引入具备数据透明性和可靠性的区块链技术,提出区块链技术下的多微网电能交易两阶段鲁棒博弈竞标调度模型.首先,对区块链技术与多微网电能交易非合作博弈模型的契合度进行分析,并给出基于区块链技术的多微网电能交易架构;其次,采用两阶段可调鲁棒优化模型和非合作博弈理论构建多微网鲁棒博弈竞标调度模型;再次,采用二进制扩充法、对偶理论、大M法、列和约束生成(column and constraint generation,C&CG)算法对该模型进行求解,得到各个微网的最优经济调度策略以及竞标策略;最后,通过算例验证了所提方法可以实现多微网系统分布式交易,提高整体经济性,并有效应对风电出力不确定性.展开更多
文摘在低碳背景下,含热电联产(Combined Heating And Power,CHP)及电转气(Power to Gas,P2G)技术的多能源微网系统可以实现多种能源清洁低碳化供应,提高能源综合利用效率。然而,风电强烈的随机性与波动性严重影响多能源微网运行的安全性与经济性。基于此,采用可调鲁棒优化方法应对风电出力不确定性;并根据P2G低碳特性和碳交易市场机制建立阶梯型碳交易模型,综合考虑常规机组的运行成本、电量交易成本、弃风惩罚成本以及碳交易成本,构建多能源微网日前双层可调鲁棒经济调度模型。最后,对系统不同场景的调度结果进行对比分析,结果表明:引入阶梯型碳价后,可以有效提升含P2G的热-电联产型多能源微网低碳运行的经济性,可调鲁棒方法能使多能源微网在经济性和保守性上得以平衡。
文摘微网群电能交易可以提高多微网系统整体经济性,促进可再生能源消纳并缓解配电网运行压力.然而风电出力不确定性严重影响了单个微网运行调控行为,进而影响微网群电能交易的经济性和可靠性.同时,可再生能源出力不确定性和微网群规模的扩大使传统集中式交易模式在处理微网群电能交易产生的海量、复杂、实时的微网数据时,存在交易信息不透明、可靠性低等问题.因此,考虑风电出力不确定性,引入具备数据透明性和可靠性的区块链技术,提出区块链技术下的多微网电能交易两阶段鲁棒博弈竞标调度模型.首先,对区块链技术与多微网电能交易非合作博弈模型的契合度进行分析,并给出基于区块链技术的多微网电能交易架构;其次,采用两阶段可调鲁棒优化模型和非合作博弈理论构建多微网鲁棒博弈竞标调度模型;再次,采用二进制扩充法、对偶理论、大M法、列和约束生成(column and constraint generation,C&CG)算法对该模型进行求解,得到各个微网的最优经济调度策略以及竞标策略;最后,通过算例验证了所提方法可以实现多微网系统分布式交易,提高整体经济性,并有效应对风电出力不确定性.