农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表...农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表现为高频信号,以分解和重构算法为基础的常见滤波(含小波变换)方法在降噪的同时,也会造成纹理清晰度的下降。该文结合农田遥感图像纹理呈现出来的直线特性,将剪切波(Shearlet)和变分理论相结合,提出了一种新的遥感农田图像保纹理降噪方法。该方法首先对较大的遥感图像分块进行shearlet变换,在降噪的同时识别不同图块图像的纹理含量;对细小纹理含量较少的平滑区域,采用保边降噪变分模型去除shearlet变换带来的人工伪影。为避免子图块边界带来的边界效应,该文基于中心仿射变换理论提出了一种新的图像延拓方法,有效提高了图像降噪的效果。试验结果表明,该文算法去噪后的峰值信噪比(peak signal to noise ratio,PSNR)平均值比全变分模型去噪算法大1 d B,该文算法去噪后的PSNR平均比曲线波去噪算法大2 d B。同基于Symmlet小波的Shearlet算法相比,该文算法处理后农田遥感图像中伪影减少,在高斯噪声标准偏差σ为10、20和30 d B时,峰值信噪比PSNR分别提高了13.99%、9.69%和7.75%。展开更多
植物叶片图像的采集过程中,由于自然环境或成像条件的影响,特别是夜间,采集到的图像大多带有椒盐噪声,造成图像质量下降。很多植物叶片含有丰富的叶脉,被噪声污染不利于后续的表型分析、图像分割等。椒盐噪声密度较小时,中值滤波降噪效...植物叶片图像的采集过程中,由于自然环境或成像条件的影响,特别是夜间,采集到的图像大多带有椒盐噪声,造成图像质量下降。很多植物叶片含有丰富的叶脉,被噪声污染不利于后续的表型分析、图像分割等。椒盐噪声密度较小时,中值滤波降噪效果较好,但在噪声污染严重时滤波方法也无法有效去噪。针对这一问题,提出了基于概率PCA的图像修复模型。一幅光滑的不含噪图像通常可认为服从高斯分布,概率PCA能有效地提取描述这幅图像中的主要信息,通过估计模型参数重构因噪声引起的数据缺失,从而达到图像修复的目的。但是当噪声的缺失像素点聚集在叶脉上时,直接用概率PCA修复会出现明显的边界效应,因此本文先基于树的叶脉进行追踪,再对叶脉进行概率PCA修复,然后再基于整幅图像利用概率PCA模型修复,迭代次数根据修复后图像的PSNR值自适应地选择。为了验证所提出的模型的修复性能,进行了与常用滤波方法的对比试验。试验结果表明:去噪后的图像PSNR值比使用均值滤波高出6 d B左右,比使用维纳滤波高出9 d B左右,比使用高斯滤波高出7 d B左右,比使用中值滤波高出1 d B左右,并且在结构相似性上采用本文算法去噪后的图像与原始图像的相似度最高。因此,将概率PCA模型应用于植物叶片彩色图像修复是可行的、有效的,为其后续的图像处理提供了技术支持。展开更多
文摘农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表现为高频信号,以分解和重构算法为基础的常见滤波(含小波变换)方法在降噪的同时,也会造成纹理清晰度的下降。该文结合农田遥感图像纹理呈现出来的直线特性,将剪切波(Shearlet)和变分理论相结合,提出了一种新的遥感农田图像保纹理降噪方法。该方法首先对较大的遥感图像分块进行shearlet变换,在降噪的同时识别不同图块图像的纹理含量;对细小纹理含量较少的平滑区域,采用保边降噪变分模型去除shearlet变换带来的人工伪影。为避免子图块边界带来的边界效应,该文基于中心仿射变换理论提出了一种新的图像延拓方法,有效提高了图像降噪的效果。试验结果表明,该文算法去噪后的峰值信噪比(peak signal to noise ratio,PSNR)平均值比全变分模型去噪算法大1 d B,该文算法去噪后的PSNR平均比曲线波去噪算法大2 d B。同基于Symmlet小波的Shearlet算法相比,该文算法处理后农田遥感图像中伪影减少,在高斯噪声标准偏差σ为10、20和30 d B时,峰值信噪比PSNR分别提高了13.99%、9.69%和7.75%。
文摘植物叶片图像的采集过程中,由于自然环境或成像条件的影响,特别是夜间,采集到的图像大多带有椒盐噪声,造成图像质量下降。很多植物叶片含有丰富的叶脉,被噪声污染不利于后续的表型分析、图像分割等。椒盐噪声密度较小时,中值滤波降噪效果较好,但在噪声污染严重时滤波方法也无法有效去噪。针对这一问题,提出了基于概率PCA的图像修复模型。一幅光滑的不含噪图像通常可认为服从高斯分布,概率PCA能有效地提取描述这幅图像中的主要信息,通过估计模型参数重构因噪声引起的数据缺失,从而达到图像修复的目的。但是当噪声的缺失像素点聚集在叶脉上时,直接用概率PCA修复会出现明显的边界效应,因此本文先基于树的叶脉进行追踪,再对叶脉进行概率PCA修复,然后再基于整幅图像利用概率PCA模型修复,迭代次数根据修复后图像的PSNR值自适应地选择。为了验证所提出的模型的修复性能,进行了与常用滤波方法的对比试验。试验结果表明:去噪后的图像PSNR值比使用均值滤波高出6 d B左右,比使用维纳滤波高出9 d B左右,比使用高斯滤波高出7 d B左右,比使用中值滤波高出1 d B左右,并且在结构相似性上采用本文算法去噪后的图像与原始图像的相似度最高。因此,将概率PCA模型应用于植物叶片彩色图像修复是可行的、有效的,为其后续的图像处理提供了技术支持。