Kerfless technology is a promising alternative for reducing cost and providing flexible thin crystals in silicon-based semiconductors. In this work we propose a protruded seed substrate technology to prepare flexible ...Kerfless technology is a promising alternative for reducing cost and providing flexible thin crystals in silicon-based semiconductors. In this work we propose a protruded seed substrate technology to prepare flexible monocrystalline Si thin film economically. Grooved seed substrate is fabricated by using SiNx thin film as a mask for the wet-etching and thermal oxidation process. After the SiNx layer on the wedged strip is removed by hot phosphoric acid, the pre-defined structured substrate is achieved with the top of the strip serving as the seed site where there is no oxide layer. And a preferred growth of epitaxial Si on the substrate is performed by introducing an intermittent feed method for silicon source gas. The technique in this paper obviously enhances the mechanical stability of the seed structure and the growth behavior on the seed sites, compared with our previous techniques, so this technique promises to be used in the industrial fabrication of flexible Si-based devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11374313)the Young Scientists Fund of the National Nature Science Foundation of China(Grant No.11504392)
文摘Kerfless technology is a promising alternative for reducing cost and providing flexible thin crystals in silicon-based semiconductors. In this work we propose a protruded seed substrate technology to prepare flexible monocrystalline Si thin film economically. Grooved seed substrate is fabricated by using SiNx thin film as a mask for the wet-etching and thermal oxidation process. After the SiNx layer on the wedged strip is removed by hot phosphoric acid, the pre-defined structured substrate is achieved with the top of the strip serving as the seed site where there is no oxide layer. And a preferred growth of epitaxial Si on the substrate is performed by introducing an intermittent feed method for silicon source gas. The technique in this paper obviously enhances the mechanical stability of the seed structure and the growth behavior on the seed sites, compared with our previous techniques, so this technique promises to be used in the industrial fabrication of flexible Si-based devices.