期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向轻量级卷积网络的激活函数与压缩模型 被引量:11
1
作者 徐增敏 陈凯 +2 位作者 郭威伟 赵汝文 蒋占四 《计算机工程》 CAS CSCD 北大核心 2022年第5期242-250,共9页
因卷积神经网络参数膨胀,导致模型训练时占用大量的计算资源和存储资源,从而限制其在边缘终端上的应用。依据深度可分离卷积模型MobileNet V1的设计思路,结合自门控函数和ReLU函数的特点,构建一种改进的激活函数和压缩神经网络模型Mobil... 因卷积神经网络参数膨胀,导致模型训练时占用大量的计算资源和存储资源,从而限制其在边缘终端上的应用。依据深度可分离卷积模型MobileNet V1的设计思路,结合自门控函数和ReLU函数的特点,构建一种改进的激活函数和压缩神经网络模型MobileNet-rhs。将ReLU函数和swish函数分别作为分段线性函数,设计激活函数ReLU-h-swish,通过优化卷积单元结构,解决模型训练过程中难以激活部分神经元的问题,以减少特征信息丢失。构建一种剔除卷积核的压缩模型,从模型深处自下而上剔除2;个卷积核,减少逐点卷积的参数量。在CIFAR-10和CIFAR-100数据集上进行实验,结果表明,引入ReLU-h-swish函数构建MobileNet-rhs模型的Top-1分类准确率为80.38%。相比MobileNet-rhs模型,压缩后MobileNet-rhs模型的参数量减少17.9%,其Top-1分类准确率仅降低2.28个百分点。此外,利用Tensorflow将该模型部署在安卓平台上,实现图像分类相册的应用。 展开更多
关键词 manifold of interest变换 深度可分离卷积 逐点卷积 自门控函数 Kotlin协程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部