期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
组合多元线性回归模型在径流预测中的应用研究 被引量:10
1
作者 郭存文 《人民珠江》 2021年第7期49-55,共7页
为提水文预测预报精度,研究提出混合蛙跳算法(SFLA)-组合多元线性回归(CMLR)径流预测模型。首先基于主成分分析(PCA)数据降维和不降维构建CMLR模型;然后利用SFLA同时优化CMLR常数项、偏回归系数和组合权重系数,建立SFLA-CMLR径流预测模... 为提水文预测预报精度,研究提出混合蛙跳算法(SFLA)-组合多元线性回归(CMLR)径流预测模型。首先基于主成分分析(PCA)数据降维和不降维构建CMLR模型;然后利用SFLA同时优化CMLR常数项、偏回归系数和组合权重系数,建立SFLA-CMLR径流预测模型;最后将SFLA-CMLR模型应用于2个年径流预测实例,并构建基于PCA降维处理的SFLA-PCA-MLR、SFLA-PCA-支持向量机(SVM)、最小二乘法(LS)-PCA-MLR、PCA-SVM和未经降维处理的SFLA-MLR、SFLA-SVM、LS-MLR、SVM作对比预测模型。结果表明:SFLA-CMLR模型对2个实例年径流预测的平均相对误差分别为1.54%、4.63%,预测精度均优于SFLA-PCA-MLR等8种模型,具有较好的预测精度和泛化能力。 展开更多
关键词 径流预测 组合多元线性回归 数据降维 混合蛙跳算法 参数优化
下载PDF
PCA-FSA-MLR模型及在径流预测中的应用研究
2
作者 郭存文 崔东文 《人民珠江》 2021年第6期91-98,共8页
为提高径流预报精度,研究提出主成分分析(PCA)、未来搜索算法(FSA)、多元线性回归(MLR)相融合的径流预测模型。利用PCA对样本数据进行降维处理,选取8个标准测试函数在不同维度条件下对FSA进行仿真验证,利用FSA优化MLR常数项和偏回归系数... 为提高径流预报精度,研究提出主成分分析(PCA)、未来搜索算法(FSA)、多元线性回归(MLR)相融合的径流预测模型。利用PCA对样本数据进行降维处理,选取8个标准测试函数在不同维度条件下对FSA进行仿真验证,利用FSA优化MLR常数项和偏回归系数,提出PCA-FSA-MLR径流预测模型,并构建基于PCA降维处理的PCA-LS-MLR、PCA-FSA-SVM、PCA-SVM模型和未经降维处理的FSA-MLR、LS-MLR、FSA-SVM、SVM作对比模型,通过云南省龙潭站年径流及枯水期12月月径流预测实例对各模型进行验证。结果表明:①FSA在不同维度条件下均具有较好的寻优精度和全局极值搜索能力;②PCA-FSA-MLR模型对龙潭站年径流及12月月径流预测的平均相对误差绝对值分别为1.63%、3.91%,预测精度均优于其他7种模型,具有更高的预测精度和更强的泛化能力;③对于同一模型,经PCA降维处理的预测精度优于未经降维处理的预测精度,PCA数据降维对提升模型预测精度具有帮助。 展开更多
关键词 径流预测 主成分分析 未来搜索算法 多元线性回归 数据降维 仿真验证 参数优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部