-
题名基于三维激光点云的目标识别与跟踪研究
被引量:31
- 1
-
-
作者
徐国艳
牛欢
郭宸阳
苏鸿杰
-
机构
北京航空航天大学交通科学与工程学院
-
出处
《汽车工程》
EI
CSCD
北大核心
2020年第1期38-46,共9页
-
基金
国家自然科学基金(51775016)资助
-
文摘
针对无人车环境感知中的障碍物检测问题,设计了一套基于车载激光雷达的目标识别与跟踪方法。为降低计算量,提高处理速度,引入了点云过滤与分割算法对原始激光点云数据进行缩减,有效提高了检测的实时性。使用多特征复合判据,基于SVM分类器改进了Adaboost算法,对三维激光点云进行直接处理,最大限度保留了感知信息,提高了识别准确度。提出基于最大熵模糊聚类的数据关联方法和相应的粒子滤波器,有效提高了复杂交通流中目标跟踪的稳定性和准确性。经百度Apollo平台数据集仿真、自主研发的无人驾驶平台实验验证和针对小目标交叠和遮挡情况的实车验证表明,该套方法具有良好的实时性和鲁棒性。
-
关键词
无人车
环境感知
激光雷达
识别
跟踪
-
Keywords
unmanned vehicle
environmental perception
lidar
recognition
tracking
-
分类号
TN958.98
[电子电信—信号与信息处理]
U463.6
[机械工程—车辆工程]
-