热电联产(combined heat and power,CHP)机组可利用区域供热网络(districtheatingnetworks,DHNs)的动态特性为电力系统提供灵活性。针对CHP机组参与在日内灵活性交易市场的决策问题,提出一种利用热网动态特性提升CHP机组实时灵活性的自...热电联产(combined heat and power,CHP)机组可利用区域供热网络(districtheatingnetworks,DHNs)的动态特性为电力系统提供灵活性。针对CHP机组参与在日内灵活性交易市场的决策问题,提出一种利用热网动态特性提升CHP机组实时灵活性的自调度策略。在分析利用DHNs动态特性提供实时灵活性机理的基础上,将CHP机组日内自调度周期划分为灵活性服务期和热平衡恢复期两个阶段,分别建立基于质调节和以质调节为主量调节为辅的优化调度模型,采用基于广义相量法的供热网络动态模型刻画质调节过程供热网络约束,以其增量网络模型反映量调节对供热网络的影响,形成DHNs在自调度周期的热平衡网络约束方程;通过在热平衡恢复期引入量调节,增加灵活性服务期的热功率调节能力,进一步释放CHP机组电功率调节能力。通过算例分析,验证在质调节过程中适度引入量调节对CHP机组灵活性提升的作用,在日内灵活性市场的向上和向下灵活性需求时段,相较于质调节策略,CHP机组的总利润变化量分别得到了25.6%和24.5%的提高,即验证所提自调度策略的特点和有效性。展开更多
文摘热电联产(combined heat and power,CHP)机组可利用区域供热网络(districtheatingnetworks,DHNs)的动态特性为电力系统提供灵活性。针对CHP机组参与在日内灵活性交易市场的决策问题,提出一种利用热网动态特性提升CHP机组实时灵活性的自调度策略。在分析利用DHNs动态特性提供实时灵活性机理的基础上,将CHP机组日内自调度周期划分为灵活性服务期和热平衡恢复期两个阶段,分别建立基于质调节和以质调节为主量调节为辅的优化调度模型,采用基于广义相量法的供热网络动态模型刻画质调节过程供热网络约束,以其增量网络模型反映量调节对供热网络的影响,形成DHNs在自调度周期的热平衡网络约束方程;通过在热平衡恢复期引入量调节,增加灵活性服务期的热功率调节能力,进一步释放CHP机组电功率调节能力。通过算例分析,验证在质调节过程中适度引入量调节对CHP机组灵活性提升的作用,在日内灵活性市场的向上和向下灵活性需求时段,相较于质调节策略,CHP机组的总利润变化量分别得到了25.6%和24.5%的提高,即验证所提自调度策略的特点和有效性。