随着交通行业的发展,交通标志检测识别成为了辅助驾驶系统中最热门的研究方向之一。在实际行车道路中,交通标志具有目标小且类别繁多的特点,针对现有检测与识别算法难以同时兼顾准确度和速率的问题,提出一种YOLOv5l(you only look once ...随着交通行业的发展,交通标志检测识别成为了辅助驾驶系统中最热门的研究方向之一。在实际行车道路中,交通标志具有目标小且类别繁多的特点,针对现有检测与识别算法难以同时兼顾准确度和速率的问题,提出一种YOLOv5l(you only look once version 5l)与视觉转换器(vision transformer,ViT)结合的检测与识别方法。首先采用YOLOv5l对目标进行检测,得出交通标志的位置信息,再将其输入ViT进行分类识别,其中特征连接部分引入DenseNet网络模块,来实现原始特征和卷积后特征映射的密集连接,加强特征的传递性,提高识别率。结果表明:在GTSDB和GTSRB数据集上实验效果更佳,交通标志检测速率达到20 ms,准确率达到98.78%,相比全连接层识别准确率提高了约4%。展开更多
文摘随着交通行业的发展,交通标志检测识别成为了辅助驾驶系统中最热门的研究方向之一。在实际行车道路中,交通标志具有目标小且类别繁多的特点,针对现有检测与识别算法难以同时兼顾准确度和速率的问题,提出一种YOLOv5l(you only look once version 5l)与视觉转换器(vision transformer,ViT)结合的检测与识别方法。首先采用YOLOv5l对目标进行检测,得出交通标志的位置信息,再将其输入ViT进行分类识别,其中特征连接部分引入DenseNet网络模块,来实现原始特征和卷积后特征映射的密集连接,加强特征的传递性,提高识别率。结果表明:在GTSDB和GTSRB数据集上实验效果更佳,交通标志检测速率达到20 ms,准确率达到98.78%,相比全连接层识别准确率提高了约4%。