期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多卷积神经网络融合的当归病虫害识别方法 被引量:1
1
作者 郭标琦 王联国 《江苏农业学报》 CSCD 北大核心 2024年第1期121-129,共9页
针对目前当归产业病虫害识别方法缺失、人工提取特征存在主观因素及卷积神经网络训练需要大量数据等不足,提出1种基于多卷积神经网络融合的当归病虫害识别方法。构建当归常见病虫害数据集;选择在当归病虫害数据集中表现性能最好的ResNe... 针对目前当归产业病虫害识别方法缺失、人工提取特征存在主观因素及卷积神经网络训练需要大量数据等不足,提出1种基于多卷积神经网络融合的当归病虫害识别方法。构建当归常见病虫害数据集;选择在当归病虫害数据集中表现性能最好的ResNet50、InceptionNetV3、VGG19、DenseNet2014个网络作为模型融合的基学习器;使用XGBoost(极度梯度提升)算法作为元学习器,得到基于多卷积神经网络融合的当归病虫害识别模型。结果表明,该融合模型比单个卷积神经网络模型具有更高的识别准确率,并优于其他融合方法融合的模型,对当归病虫害识别的查准率、查全率、F 1值分别达到98.33%、97.14%、97.68%。本研究提出的基于XGBoost融合方法融合的模型实现了当归常见病虫害的精确分类,对常见病害的识别准确率达到98.33%,为当归产业提供了一种有效的病虫害识别方法。 展开更多
关键词 当归病虫害分类 卷积神经网络 极度梯度提升(XGBoost)融合方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部