期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于径向基神经网络的白矮主序双星自动分类
被引量:
1
1
作者
王文玉
郭格霖
+1 位作者
姜斌
王丽
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2016年第10期3360-3363,共4页
白矮主序双星的光谱特征是决定其类型的关键因素,如何有效提取恒星光谱的特征是亟待解决的问题。提出一种新的方法,通过构建模型捕获恒星光谱数据的特征,对SDSS-DR10海量光谱进行自动分类。径向基神经网络作为一种有效的计算模型,在数...
白矮主序双星的光谱特征是决定其类型的关键因素,如何有效提取恒星光谱的特征是亟待解决的问题。提出一种新的方法,通过构建模型捕获恒星光谱数据的特征,对SDSS-DR10海量光谱进行自动分类。径向基神经网络作为一种有效的计算模型,在数值逼近和目标分类上均有较好的表现效果,但由于目前神经网络超参数的确定大多数依赖于实验经验,很大程度上制约了算法能力的发挥。在分析白矮主序双星光谱数据的高维分布特征的基础上,提出一种基于径向基神经网络的白矮主序双星自动分类模型,并以白矮主序双星的光谱特征为导向,针对恒星光谱提出了中心准则和宽度准则以确定神经网络的超参数,大幅度提高了模型的准确度。实验对分类模型进行数值训练并使用训练的模型对SDSS-DR10光谱数据进行白矮主序双星的自动分类,共发现4 631个白矮主序双星,通过Simbad,NED和Google交叉验证后发现其中有25个是未予以收录的新候选体。实验结果验证了该模型在大规模白矮主序双星自动分类任务中的有效性,新发现的白矮主序双星也为特殊天体的进一步研究补充了有效数据。
展开更多
关键词
白矮主序双星
径向基神经网络
自动分类
中心准则
宽度准则
下载PDF
职称材料
白矮主序双星光谱的卷积特征提取
2
作者
王文玉
郭格霖
+1 位作者
马春雨
姜斌
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2018年第9期2962-2965,共4页
通过卷积运算提取白矮主序双星的光谱特征是提高识别精度的有效手段。通过设计一维卷积神经网络,以判别学习的方式从大量混合光谱中拟合出具有稳定分布的12个卷积核,有效提取白矮主序双星的卷积特征。通过引入相对松弛的光谱类别先验分...
通过卷积运算提取白矮主序双星的光谱特征是提高识别精度的有效手段。通过设计一维卷积神经网络,以判别学习的方式从大量混合光谱中拟合出具有稳定分布的12个卷积核,有效提取白矮主序双星的卷积特征。通过引入相对松弛的光谱类别先验分布,提出反贝叶斯学习策略以解决由于光谱抽样有偏带来的问题,显著提高识别精度。通过比较光谱在不同信噪比下的交叉熵测试误差,分析卷积特征的提取过程对光谱信噪比的鲁棒性。实验发现,基于反贝叶斯学习策略的一维卷积神经网络对白矮主序双星的识别准确率达到99.0(±0.3),超过了经典的PCA+SVM模型。卷积特征谱的池化过程以降低光谱分辨率的形式缓解了光谱噪声对识别精度的影响。当信噪比小于3时,必须通过增加模型在光谱上的迭代次数以形成稳定的卷积核;当信噪比介于3与6之间时,光谱卷积特征较为稳定;当信噪比大于6时,光谱卷积特征的稳定性显著上升,信噪比对于模型识别精度带来的影响可以忽略。
展开更多
关键词
白矮主序双星
一维卷积神经网络
反贝叶斯学习策略
信噪比
下载PDF
职称材料
题名
基于径向基神经网络的白矮主序双星自动分类
被引量:
1
1
作者
王文玉
郭格霖
姜斌
王丽
机构
山东大学(威海)机电与信息工程学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2016年第10期3360-3363,共4页
基金
国家自然科学基金项目(11473019)
山东省自然科学基金项目(ZR2014AM015)
山东大学基本科研业务费项目(2015ZZXM002)资助
文摘
白矮主序双星的光谱特征是决定其类型的关键因素,如何有效提取恒星光谱的特征是亟待解决的问题。提出一种新的方法,通过构建模型捕获恒星光谱数据的特征,对SDSS-DR10海量光谱进行自动分类。径向基神经网络作为一种有效的计算模型,在数值逼近和目标分类上均有较好的表现效果,但由于目前神经网络超参数的确定大多数依赖于实验经验,很大程度上制约了算法能力的发挥。在分析白矮主序双星光谱数据的高维分布特征的基础上,提出一种基于径向基神经网络的白矮主序双星自动分类模型,并以白矮主序双星的光谱特征为导向,针对恒星光谱提出了中心准则和宽度准则以确定神经网络的超参数,大幅度提高了模型的准确度。实验对分类模型进行数值训练并使用训练的模型对SDSS-DR10光谱数据进行白矮主序双星的自动分类,共发现4 631个白矮主序双星,通过Simbad,NED和Google交叉验证后发现其中有25个是未予以收录的新候选体。实验结果验证了该模型在大规模白矮主序双星自动分类任务中的有效性,新发现的白矮主序双星也为特殊天体的进一步研究补充了有效数据。
关键词
白矮主序双星
径向基神经网络
自动分类
中心准则
宽度准则
Keywords
WDMS
Radial basis function(RBF)neural network
Automatic classification
Centroids criterion
Width criterion
分类号
O657.3 [理学—分析化学]
下载PDF
职称材料
题名
白矮主序双星光谱的卷积特征提取
2
作者
王文玉
郭格霖
马春雨
姜斌
机构
山东大学(威海)机电与信息工程学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2018年第9期2962-2965,共4页
基金
国家自然科学基金项目(11473019)
山东省自然科学基金项目(ZR2014AM015)
中国博士后科学基金项目(2016M592175)资助
文摘
通过卷积运算提取白矮主序双星的光谱特征是提高识别精度的有效手段。通过设计一维卷积神经网络,以判别学习的方式从大量混合光谱中拟合出具有稳定分布的12个卷积核,有效提取白矮主序双星的卷积特征。通过引入相对松弛的光谱类别先验分布,提出反贝叶斯学习策略以解决由于光谱抽样有偏带来的问题,显著提高识别精度。通过比较光谱在不同信噪比下的交叉熵测试误差,分析卷积特征的提取过程对光谱信噪比的鲁棒性。实验发现,基于反贝叶斯学习策略的一维卷积神经网络对白矮主序双星的识别准确率达到99.0(±0.3),超过了经典的PCA+SVM模型。卷积特征谱的池化过程以降低光谱分辨率的形式缓解了光谱噪声对识别精度的影响。当信噪比小于3时,必须通过增加模型在光谱上的迭代次数以形成稳定的卷积核;当信噪比介于3与6之间时,光谱卷积特征较为稳定;当信噪比大于6时,光谱卷积特征的稳定性显著上升,信噪比对于模型识别精度带来的影响可以忽略。
关键词
白矮主序双星
一维卷积神经网络
反贝叶斯学习策略
信噪比
Keywords
WDMS
One dimensional CNN
Anti-bayesian learning paradigm
SNR
分类号
TP29 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于径向基神经网络的白矮主序双星自动分类
王文玉
郭格霖
姜斌
王丽
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2016
1
下载PDF
职称材料
2
白矮主序双星光谱的卷积特征提取
王文玉
郭格霖
马春雨
姜斌
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2018
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部