期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LSTM的工业互联网设备工作状态预测
被引量:
6
1
作者
李兆桐
张卫山
郭武武
《计算机与现代化》
2020年第1期1-5,共5页
随着工业互联网技术的发展,工业互联网设备的工作状态预测对于提升设备的可靠性具有重要意义。在实际的工业场景中,由于设备数据高度离散且在多个时间段内相互重合,简单的单信号预测和阈值方法是无效的。本文提出一种基于LSTM(长短时记...
随着工业互联网技术的发展,工业互联网设备的工作状态预测对于提升设备的可靠性具有重要意义。在实际的工业场景中,由于设备数据高度离散且在多个时间段内相互重合,简单的单信号预测和阈值方法是无效的。本文提出一种基于LSTM(长短时记忆)神经网络的设备工作状态预测模型。首先使用SMOTE算法进行数据倾斜处理,利用PCA算法进行数据降维,之后基于LSTM神经网络构建设备工作状态预测模型,最后利用F1分数值进行模型评估。本文基于真实的空调压缩机数据进行实验验证,实验结果表明了本文方法的有效性。
展开更多
关键词
长短时记忆神经网络
时间序列预测
工业互联网设备
下载PDF
职称材料
题名
基于LSTM的工业互联网设备工作状态预测
被引量:
6
1
作者
李兆桐
张卫山
郭武武
机构
中国石油大学(华东)计算机与通信工程学院
出处
《计算机与现代化》
2020年第1期1-5,共5页
基金
国家自然科学基金资助项目(61309024)
山东省重点科研项目(2017GGX10140)
山东省自然科学基金资助项目(F020509,F060604)
文摘
随着工业互联网技术的发展,工业互联网设备的工作状态预测对于提升设备的可靠性具有重要意义。在实际的工业场景中,由于设备数据高度离散且在多个时间段内相互重合,简单的单信号预测和阈值方法是无效的。本文提出一种基于LSTM(长短时记忆)神经网络的设备工作状态预测模型。首先使用SMOTE算法进行数据倾斜处理,利用PCA算法进行数据降维,之后基于LSTM神经网络构建设备工作状态预测模型,最后利用F1分数值进行模型评估。本文基于真实的空调压缩机数据进行实验验证,实验结果表明了本文方法的有效性。
关键词
长短时记忆神经网络
时间序列预测
工业互联网设备
Keywords
LSTM neural network
time series prediction
industrial Internet equipment
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LSTM的工业互联网设备工作状态预测
李兆桐
张卫山
郭武武
《计算机与现代化》
2020
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部