期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MongoDB的矢量空间数据云存储与处理系统 被引量:42
1
作者 雷德龙 郭殿升 +2 位作者 陈崇成 巫建伟 吴小竹 《地球信息科学学报》 CSCD 北大核心 2014年第4期507-516,共10页
近年来,海量空间数据存储与处理日益成为地理信息科学领域的研究热点。其中,矢量空间数据更因其较高的复杂性,成为该类研究的重点问题。本文基于文档数据库,探究了多用户数据存储、矢量空间数据存储、海量矢量空间数据并行处理等问题,... 近年来,海量空间数据存储与处理日益成为地理信息科学领域的研究热点。其中,矢量空间数据更因其较高的复杂性,成为该类研究的重点问题。本文基于文档数据库,探究了多用户数据存储、矢量空间数据存储、海量矢量空间数据并行处理等问题,给出了存储和处理矢量空间数据的方法。在三层式云存储架构基础上,设计并实现了矢量空间数据云存储与处理系统VectorDB,达到了海量矢量空间数据的高效存储与处理要求。系统采用文档数据库MongoDB存储矢量空间数据,使用OGR库实现不同格式矢量空间数据的转换与存储,并用Hadoop对数据库中的数据进行并行计算,以及用mongo-hadoop作为MongoDB与Hadoop之间的连接器。通过实验对比了VectorDB与PostGIS的矢量空间数据读写性能,并分析了VectorDB与MongoDB在海量数据并行处理性能方面的差异。结果表明:VectorDB具有更好的读取性能和海量数据处理性能,适合多用户不同格式、不同属性矢量空间数据存储,对海量矢量数据存储与处理问题具有参考价值。 展开更多
关键词 矢量数据 NOSQL数据库 MONGODB 云存储 HADOOP 多用户
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部