期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合自注意力特征嵌入的夜间机场跑道异物入侵检测 被引量:9
1
作者 何自芬 陈光晨 +2 位作者 王森 张印辉 郭琳伟 《光学精密工程》 EI CAS CSCD 北大核心 2022年第13期1591-1605,共15页
飞机在夜间起降时机场跑道上侵入的异物严重威胁航空运输安全,而暗光背景下依靠人工步行巡查小尺度异物更易留存致命的安全隐患。将智能视觉检测算法引入机场跑道异物入侵领域,针对现有模型倾向关注局部特征而造成检测精度低等问题,设... 飞机在夜间起降时机场跑道上侵入的异物严重威胁航空运输安全,而暗光背景下依靠人工步行巡查小尺度异物更易留存致命的安全隐患。将智能视觉检测算法引入机场跑道异物入侵领域,针对现有模型倾向关注局部特征而造成检测精度低等问题,设计了一种融合自注意力特征嵌入的CSPTNet夜间机场跑道异物检测算法。为改善卷积神经网络关注局部特征而忽视全局特征的缺陷,将标准瓶颈模块替换为Transformer瓶颈模块,特征图子块扁平化分割后嵌入位置特征编码,有利于图像从像素表示转化为向量表示,在高维向量空间中捕捉像素间关系。采用多头自注意力机制从注意力分支子空间中获取不同分支聚合的特征信息,从而实现全局特征与局部特征信息的融合。针对数据集目标尺度较小导致轮廓边缘模糊以及定位困难等问题,引入CIoU损失函数以实现预测框尺寸和中心位置的修正优化,提高异物目标轮廓的定位精确性。实验结果表明,本文模型的检测速度达到38 frame/s,满足实时检测的要求;平均精度最高为88.1%,应用融合自注意力特征嵌入的Transformer模块相比于标准瓶颈模块提升5.7%,与当前先进的YOLOv5模型相比提升5.2%,从而验证了CSPTNet算法对夜间机场跑道异物检测的有效性和工程实用性。 展开更多
关键词 夜间机场跑道 异物入侵检测 目标定位损失 特征嵌入 多头自注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部