为有效降低城市交通干线的车均延误与停车次数,将深度Q网络引入干线协调控制,给出了一种干线动态协调控制的DDDQN(Dueling Double Deep Q Network)方法。该方法结合双重深度Q网络与基于竞争架构深度Q网络,并将干线作为整体处理,通过深...为有效降低城市交通干线的车均延误与停车次数,将深度Q网络引入干线协调控制,给出了一种干线动态协调控制的DDDQN(Dueling Double Deep Q Network)方法。该方法结合双重深度Q网络与基于竞争架构深度Q网络,并将干线作为整体处理,通过深度神经网络挖掘干线各交叉口协调控制的相关性,基于Q学习进行交通信号控制决策。通过仿真实验,在近饱和流量和干线存在初始排队的情况下,将DDDQN方法与现有绿波方法,以及经典深度Q网络、双重深度Q网络、基于竞争架构深度Q网络的干线协调控制算法进行对比,实验结果表明基于DDDQN的干线动态协调控制算法性能优于其他四种方法。展开更多
文摘为有效降低城市交通干线的车均延误与停车次数,将深度Q网络引入干线协调控制,给出了一种干线动态协调控制的DDDQN(Dueling Double Deep Q Network)方法。该方法结合双重深度Q网络与基于竞争架构深度Q网络,并将干线作为整体处理,通过深度神经网络挖掘干线各交叉口协调控制的相关性,基于Q学习进行交通信号控制决策。通过仿真实验,在近饱和流量和干线存在初始排队的情况下,将DDDQN方法与现有绿波方法,以及经典深度Q网络、双重深度Q网络、基于竞争架构深度Q网络的干线协调控制算法进行对比,实验结果表明基于DDDQN的干线动态协调控制算法性能优于其他四种方法。