将列表级排序学习和推荐算法相结合,能够有效提高传统推荐系统返回结果的准确性。针对社交网络环境,提出一种基于列表级排序学习的推荐算法L2 R2SN (list-wise learning to rank for recommendation for social networks)。从社交网络...将列表级排序学习和推荐算法相结合,能够有效提高传统推荐系统返回结果的准确性。针对社交网络环境,提出一种基于列表级排序学习的推荐算法L2 R2SN (list-wise learning to rank for recommendation for social networks)。从社交网络中挖掘出用户好友潜在的影响特征,以及物品潜在的隐性特征,融入列表级排序学习的推荐模型中,通过梯度下降方法迭代训练模型参数获得模型的最优解,将物品列表中排序较前的top-k个物品推送给用户。多组实验结果表明,L2 R2SN算法能够有效提高推荐结果的准确性,更为有效地反映用户的偏好。展开更多
文摘将列表级排序学习和推荐算法相结合,能够有效提高传统推荐系统返回结果的准确性。针对社交网络环境,提出一种基于列表级排序学习的推荐算法L2 R2SN (list-wise learning to rank for recommendation for social networks)。从社交网络中挖掘出用户好友潜在的影响特征,以及物品潜在的隐性特征,融入列表级排序学习的推荐模型中,通过梯度下降方法迭代训练模型参数获得模型的最优解,将物品列表中排序较前的top-k个物品推送给用户。多组实验结果表明,L2 R2SN算法能够有效提高推荐结果的准确性,更为有效地反映用户的偏好。