SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
It is significant for low-cost preparation of YBa2Cu3O7-δ(YBCO) coated conductors to make clear the mechanism of orientation, copper segregation, and nucleation density in BaF2-derived YBCO crystallization. In the ...It is significant for low-cost preparation of YBa2Cu3O7-δ(YBCO) coated conductors to make clear the mechanism of orientation, copper segregation, and nucleation density in BaF2-derived YBCO crystallization. In the present work,a distinct nucleation mechanism was proposed based on a transient liquid phase induced by the size effect as well as near-equilibrium assumption. With this scheme the nucleation of YBCO prepared by metal–organic deposition(MOD) or the physical vapor deposition BaF2 process was semi-quantitatively analyzed, revealing that the direct driving force for nucleation is YBCO supersaturation in the liquid phase. The theoretical analysis on the nucleation orientation portion is evidenced by the experimental result.展开更多
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).
基金Sponsored by the Science and Technology Commission of Shanghai Municipality(13111102300 and 14521102800)the National Natural Science Foundation of China(11174193 and 51202141)+1 种基金the Ministry of Science and Technology of China(973 Projects,2011CBA00105)the Science and Technology Commission of Shanghai Municipality(14DZ2260700)
基金Project supported by the Science and Technology Commission of Shanghai Municipality,China(Grant Nos.13111102300 and 11dz1100302)the National Natural Science Foundation of China(Grant Nos.11174193 and 51202141)+1 种基金the National Basic Research Program of China(Grant Nos.2011CBA00105)the Science and Technology Commission of Shanghai Municipality,China(Grant No.14DZ2260700)
文摘It is significant for low-cost preparation of YBa2Cu3O7-δ(YBCO) coated conductors to make clear the mechanism of orientation, copper segregation, and nucleation density in BaF2-derived YBCO crystallization. In the present work,a distinct nucleation mechanism was proposed based on a transient liquid phase induced by the size effect as well as near-equilibrium assumption. With this scheme the nucleation of YBCO prepared by metal–organic deposition(MOD) or the physical vapor deposition BaF2 process was semi-quantitatively analyzed, revealing that the direct driving force for nucleation is YBCO supersaturation in the liquid phase. The theoretical analysis on the nucleation orientation portion is evidenced by the experimental result.