针对部分变量误差(partial EIV)模型的加权整体最小二乘(weighted total least squares,WTLS)估值的计算需要多次迭代且效率低下的情况,根据加权LS(least square)原理,通过改进目标函数,并运用矩阵微分运算以及矩阵反演变换,提出了一种...针对部分变量误差(partial EIV)模型的加权整体最小二乘(weighted total least squares,WTLS)估值的计算需要多次迭代且效率低下的情况,根据加权LS(least square)原理,通过改进目标函数,并运用矩阵微分运算以及矩阵反演变换,提出了一种计算partial EIV模型WTLS估值的新算法。算例计算结果表明,新算法具有迭代次数少、计算效率高等优点。展开更多
文摘针对部分变量误差(partial EIV)模型的加权整体最小二乘(weighted total least squares,WTLS)估值的计算需要多次迭代且效率低下的情况,根据加权LS(least square)原理,通过改进目标函数,并运用矩阵微分运算以及矩阵反演变换,提出了一种计算partial EIV模型WTLS估值的新算法。算例计算结果表明,新算法具有迭代次数少、计算效率高等优点。