为了解决双馈风机(doubly fed induction generator,DFIG)在并网或运行时给电网带来的稳定性问题,提出了静止无功发生器(static var generator,SVG)与DFIG协同补偿无功的方法,并在此基础上通过线性自抗扰控制(linear active disturbance...为了解决双馈风机(doubly fed induction generator,DFIG)在并网或运行时给电网带来的稳定性问题,提出了静止无功发生器(static var generator,SVG)与DFIG协同补偿无功的方法,并在此基础上通过线性自抗扰控制(linear active disturbance rejection control,LADRC)代替传统的PI控制来控制变流器,以及加装超级电容储能对DFIG的变流器直流侧控制进行优化。最后结合风电场的实际情况,在MATLAB中搭建了使用LADRC的含超级电容的双馈风机并网模型,并对其并网时的交直流波动以及无功功率的传输进行了仿真分析,实验结果验证了该控制策略可以提高双馈风机稳定运行的能力,解决功率波动时变流器交直流侧功率不平衡的问题,与SVG的协同控制策略可以提高系统的低电压穿越能力,提高了整个风力发电系统的稳定性。展开更多
文摘为了解决双馈风机(doubly fed induction generator,DFIG)在并网或运行时给电网带来的稳定性问题,提出了静止无功发生器(static var generator,SVG)与DFIG协同补偿无功的方法,并在此基础上通过线性自抗扰控制(linear active disturbance rejection control,LADRC)代替传统的PI控制来控制变流器,以及加装超级电容储能对DFIG的变流器直流侧控制进行优化。最后结合风电场的实际情况,在MATLAB中搭建了使用LADRC的含超级电容的双馈风机并网模型,并对其并网时的交直流波动以及无功功率的传输进行了仿真分析,实验结果验证了该控制策略可以提高双馈风机稳定运行的能力,解决功率波动时变流器交直流侧功率不平衡的问题,与SVG的协同控制策略可以提高系统的低电压穿越能力,提高了整个风力发电系统的稳定性。