为应用方便直观的电路方法进行双馈风电并网系统故障分析和短路计算,针对电网故障后转子侧变流器(rotor side converter,RSC)控制方式提出一种双馈风机(doubly-fed induction generator,DFIG)序网等值电路。故障后RSC不间断控制的运行...为应用方便直观的电路方法进行双馈风电并网系统故障分析和短路计算,针对电网故障后转子侧变流器(rotor side converter,RSC)控制方式提出一种双馈风机(doubly-fed induction generator,DFIG)序网等值电路。故障后RSC不间断控制的运行方式下,DFIG定子短路电流中含有幅值稳定的工频正负序分量、2个衰减速度不同且频率接近工频的正序分量以及衰减直流分量。分别推导了各交流成分对应的序网等值电路,其中,稳定工频正序分量对应的等值电路可用等值电势及正序阻抗来表示;稳定工频负序分量对应的等值电路用无源的负序阻抗来表示;而衰减交流分量可用受控电流源来描述。利用所提DFIG等值电路,应用传统序网分析方法即可方便进行短路计算,不需仿真就能获得双馈风机并网系统中各处的短路电流。通过PSCAD仿真验证了所提等值电路和解析算法的有效性。展开更多
文摘为应用方便直观的电路方法进行双馈风电并网系统故障分析和短路计算,针对电网故障后转子侧变流器(rotor side converter,RSC)控制方式提出一种双馈风机(doubly-fed induction generator,DFIG)序网等值电路。故障后RSC不间断控制的运行方式下,DFIG定子短路电流中含有幅值稳定的工频正负序分量、2个衰减速度不同且频率接近工频的正序分量以及衰减直流分量。分别推导了各交流成分对应的序网等值电路,其中,稳定工频正序分量对应的等值电路可用等值电势及正序阻抗来表示;稳定工频负序分量对应的等值电路用无源的负序阻抗来表示;而衰减交流分量可用受控电流源来描述。利用所提DFIG等值电路,应用传统序网分析方法即可方便进行短路计算,不需仿真就能获得双馈风机并网系统中各处的短路电流。通过PSCAD仿真验证了所提等值电路和解析算法的有效性。