期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合高光谱成像和机器学习的棉种年份鉴别 被引量:5
1
作者 段龙 鄢天荥 +4 位作者 王江丽 叶伟欣 陈伟 高攀 吕新 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第12期3857-3863,共7页
棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(... 棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(HSI)进行棉种年份精确鉴别,实现棉种的快速无损筛选。采集2016年—2019年近四年外观无明显差异的棉种各360粒,共1440粒棉种(按照3∶1∶1划分训练集、验证集和测试集)作为样本,按照每批60粒采集915~1698 nm范围的棉种高光谱图像,去除首尾两端噪声大的光谱,保留1002~1602 nm范围的光谱为原始数据。利用Savitzky-Golay(SG)平滑算法对光谱进行预处理,采用主成分载荷方法(PCA-loading)选取13个特征波段,基于全部光谱数据和特征波段(±10 nm)数据建立逻辑回归(LR)、偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、循环神经网络(RNN)、长短记忆网络(LSTM)和卷积神经网络(CNN)六种分类模型。使用全光谱数据建模时,六种分类模型在测试集上的鉴别准确率分别为96.27%,98.98%,99.32%,96.95%,97.63%和100%,其中CNN和SVM模型取得了较好的结果;使用特征光谱数据建模时,六种分类模型在测试集上的鉴别精度分别为93.56%,97.29%,98.30%,95.25%,94.24%和99.66%,其中CNN和SVM模型仍有较好的分类结果。结果表明,使用全光谱数据建模时,六种分类模型都可以实现较高精度的棉种年份鉴别,使用特征光谱数据建模时CNN和SVM模型的鉴别精度仍可达到98%;其中深度学习方法优于传统机器学习方法,但是传统机器学习方法仍能保持较好的鉴别准确率。因此,结合近红外高光谱成像技术和机器学习方法能够实现棉种年份的高精度鉴别,为棉花精量播种过程中的优质棉种选种技术提供理论依据和方法。 展开更多
关键词 高光谱成像 棉种年份鉴别 卷积神经网络 机器学习
下载PDF
基于无人机数码图像的机采棉脱叶率监测模型构建 被引量:2
2
作者 马怡茹 吕新 +5 位作者 祁亚琴 张泽 易翔 陈翔宇 鄢天荥 侯彤瑜 《棉花学报》 CSCD 北大核心 2021年第4期347-359,共13页
【目的】脱叶率是评价机采棉脱叶催熟效果的重要依据。以无人机RGB图像为基础数据源,通过从RGB图像中提取14种可见光植被指数,建立快速、准确监测棉花脱叶率的模型,为机采棉适时采收提供理论和技术支持。【方法】设置不同棉花品种,通过... 【目的】脱叶率是评价机采棉脱叶催熟效果的重要依据。以无人机RGB图像为基础数据源,通过从RGB图像中提取14种可见光植被指数,建立快速、准确监测棉花脱叶率的模型,为机采棉适时采收提供理论和技术支持。【方法】设置不同棉花品种,通过采集不同脱叶剂浓度及喷施时间处理下的棉花脱叶率数据,并利用无人机采集冠层RGB图像,提取可见光植被指数,分析其与棉花脱叶率的相关关系,进而采用一元线性回归(Simple linear regression,SLR)、多元线性回归(Multivariate linear regression,MLR)和偏最小二乘法回归(Partial least square regression,PLSR)构建棉花脱叶率监测模型,并进行模型评价。【结果】不同处理下的棉花脱叶率有明显差异,脱叶率与不同可见光植被指数存在较好相关性,其中三角形绿度值(Triangular greenness index,TGI)与棉花脱叶率的相关性最高(r=0.81)。建模结果表明,SLR模型中,以TGI指数建模效果最好(决定系数0.66,均方根误差10.44%,相对均方根误差12.87%);MLR模型中,以过蓝指数(Excess blue index,ExB)、绿叶指数(Green leaf index,GLI)、TGI和过绿指数(Excess green index,ExG)4个植被指数组合建立的模型效果最好,其决定系数为0.70,均方根误差为10.26%,相对均方根误差为12.65%。PLSR模型中,以ExB、GLI、TGI、ExG、综合植被指数2和综合植被指数1建立的模型精度更高,其决定系数为0.70,均方根误差为10.02%,相对均方根误差为12.22%。外部验证表明,各模型实测值与预测值间有较好的拟合关系。【结论】以MLR和PLSR方法建立的模型精度较高,拟合程度较好。从计算量及模型复杂程度角度考虑,通过MLR方法以ExB、GLI、TGI、ExG建立的棉花脱叶率监测模型,能够更好地监测棉花脱叶率。 展开更多
关键词 棉花 脱叶率 可见光植被指数 RGB图像 无人机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部