期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合全局语义信息的BIG-LSTM-CRF模型
被引量:
1
1
作者
胡俊英
王煜华
+1 位作者
金书意
张博
《纯粹数学与应用数学》
2024年第1期106-116,共11页
命名实体识别任务是针对输入的文本句子做序列标注的一类自然语言处理任务,其目的是抽取出文本句子中的主语实体和宾语实体.基于深度神经网络的提取方法获得了优异的性能,其中BI-LSTM-CRF是效果显著且具有代表性的模型之一.但该模型在...
命名实体识别任务是针对输入的文本句子做序列标注的一类自然语言处理任务,其目的是抽取出文本句子中的主语实体和宾语实体.基于深度神经网络的提取方法获得了优异的性能,其中BI-LSTM-CRF是效果显著且具有代表性的模型之一.但该模型在训练过程中忽略了全局语义信息对实体识别准确度的影响.本文通过引入全局语义信息来改进BI-LSTM-CRF模型用于命名实体识别任务的性能:先通过添加一层带有激活操作的全连接层来提取输入文本句子的高维语义信息;再通过一个全连接层将高维语义信息与每个字符进行深度融合,得到该句子融合了全局语义信息的向量表示,并将其用于后续的命名实体识别任务.通过将改进后的模型用于CLUENER2020数据集上,验证了添加全局语义信息融合模块可以提升模型命名实体识别的准确度.
展开更多
关键词
BI-LSTM-CRF
自然语言处理
命名实体识别
神经网络
下载PDF
职称材料
题名
融合全局语义信息的BIG-LSTM-CRF模型
被引量:
1
1
作者
胡俊英
王煜华
金书意
张博
机构
西北大学数学学院
出处
《纯粹数学与应用数学》
2024年第1期106-116,共11页
基金
国家自然科学基金(10671155,10112021)。
文摘
命名实体识别任务是针对输入的文本句子做序列标注的一类自然语言处理任务,其目的是抽取出文本句子中的主语实体和宾语实体.基于深度神经网络的提取方法获得了优异的性能,其中BI-LSTM-CRF是效果显著且具有代表性的模型之一.但该模型在训练过程中忽略了全局语义信息对实体识别准确度的影响.本文通过引入全局语义信息来改进BI-LSTM-CRF模型用于命名实体识别任务的性能:先通过添加一层带有激活操作的全连接层来提取输入文本句子的高维语义信息;再通过一个全连接层将高维语义信息与每个字符进行深度融合,得到该句子融合了全局语义信息的向量表示,并将其用于后续的命名实体识别任务.通过将改进后的模型用于CLUENER2020数据集上,验证了添加全局语义信息融合模块可以提升模型命名实体识别的准确度.
关键词
BI-LSTM-CRF
自然语言处理
命名实体识别
神经网络
Keywords
BI-LSTM-CRF
natural language processing
named entity recognition
neural network
分类号
TP389.1 [自动化与计算机技术—计算机系统结构]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合全局语义信息的BIG-LSTM-CRF模型
胡俊英
王煜华
金书意
张博
《纯粹数学与应用数学》
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部