期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5s的草莓多阶段识别检测轻量化算法 被引量:2
1
作者 黄家才 赵雪迪 +3 位作者 高芳征 温鑫 金少宇 张洋 《农业工程学报》 EI CAS CSCD 北大核心 2023年第21期181-187,共7页
为解决草莓采摘过程中被遮挡及目标较小情况下漏检的问题,同时提升草莓的识别精度与计算速率,该研究提出了一种基于改进的轻量级Mobile-YOLOv5s草莓识别检测算法。首先,为了提高计算效率,使用了轻量化的MobileNetV3网络替代了原始的YOLO... 为解决草莓采摘过程中被遮挡及目标较小情况下漏检的问题,同时提升草莓的识别精度与计算速率,该研究提出了一种基于改进的轻量级Mobile-YOLOv5s草莓识别检测算法。首先,为了提高计算效率,使用了轻量化的MobileNetV3网络替代了原始的YOLOv5s主干网络,并引入了Alpha-IoU损失函数以加快模型的收敛速度,提高对重叠目标的识别准确率;其次,考虑到草莓目标较小的情况,使用K-Means++算法对原始YOLO的anchor进行重聚类,并增加了一个检测头,使其更加适应草莓的尺寸。试验结果表明,改进后的网络模型检测帧率为44帧/s,比原模型提升了15.7%;计算量为8.3×10^(9)/s,比原模型降低了48%;模型大小为4.5 MB,比原模型降低了41.5%;成熟草莓检测精度为99.5%,均值平均精度为99.4%,相较于原YOLOv5s算法分别提高了3.6和9.2个百分点。改进后的模型可以更快速、准确地识别出各阶段的草莓,为草莓智能化采摘提供技术支撑。 展开更多
关键词 图像识别 草莓 YOLOv5s MobileNetV3 轻量化 移动端部署
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部