MXene是一类新型二维过渡金属碳化物晶体,该类材料具有一些优异的性质,如高的电导率、低的锂离子扩散能垒、独特的金属离子吸附特性等等,但是,作为锂离子电极材料时,MXene材料容量较低,限制了它在锂离子电池领域的进一步应用。本文以Ti_...MXene是一类新型二维过渡金属碳化物晶体,该类材料具有一些优异的性质,如高的电导率、低的锂离子扩散能垒、独特的金属离子吸附特性等等,但是,作为锂离子电极材料时,MXene材料容量较低,限制了它在锂离子电池领域的进一步应用。本文以Ti_3C_2(最具代表性的一种MXene材料)为基体材料,通过液相插层、水热合成以及高温热处理,成功制备出二维SnS@Ti_3C_2复合材料。研究发现,当Ti_3C_2:L-半胱氨酸的质量比为1:3时(L-半胱氨酸:Na2Sn O3·4H2O=1:4),合成出来的Sn S@Ti_3C_2在0.1 A×g^(-1)的电流密度下循环50次之后,容量达到735.8 m Ah×g^(-1),且保持稳定;在3 A×g^(-1)的电流密度下,其容量能达到525.4 m Ah g^(-1);而当电流恢复到0.1 A×g^(-1)时,其容量能恢复到689.2 m Ah×g^(-1),展现出了优异的倍率性能。展开更多
文摘MXene是一类新型二维过渡金属碳化物晶体,该类材料具有一些优异的性质,如高的电导率、低的锂离子扩散能垒、独特的金属离子吸附特性等等,但是,作为锂离子电极材料时,MXene材料容量较低,限制了它在锂离子电池领域的进一步应用。本文以Ti_3C_2(最具代表性的一种MXene材料)为基体材料,通过液相插层、水热合成以及高温热处理,成功制备出二维SnS@Ti_3C_2复合材料。研究发现,当Ti_3C_2:L-半胱氨酸的质量比为1:3时(L-半胱氨酸:Na2Sn O3·4H2O=1:4),合成出来的Sn S@Ti_3C_2在0.1 A×g^(-1)的电流密度下循环50次之后,容量达到735.8 m Ah×g^(-1),且保持稳定;在3 A×g^(-1)的电流密度下,其容量能达到525.4 m Ah g^(-1);而当电流恢复到0.1 A×g^(-1)时,其容量能恢复到689.2 m Ah×g^(-1),展现出了优异的倍率性能。