Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of thebasaI conglomerate of the Tietonggou Formation or at the unconfondty between the Tietonggou Formation and the crystalline b...Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of thebasaI conglomerate of the Tietonggou Formation or at the unconfondty between the Tietonggou Formation and the crystalline basement. The composition of fluid inclusions in the minerals indicates thatthe nature and composition of ore-forming hydrothermal solutions show a drashca1 change soon afterthe solutions reached the Tietonggou Formation from the crystailine basement, resulhng in go1d pre -cipitation. So the Bankuan gold deposit can be assigned to the conglomerate strata-bound-type depo-sits. 137 thermometric data are concentrated in the three ranges 400-340℃, 330-220℃ and180-160℃, represenhng three episodes of metallogenesis. Oxygen isotope studies demonstrate theevolution of ore-forming hydrothermal solutions from early metamorphic to late meteoric. Diversity oforoforming materials dominated by deep-source material is supportal by sulphur and lead isotope da-ta. From the above discussions it may be concluded that the deposit formed by metamorphism in-duced as a result of Mesozoic northward intracontinental subduction along the Machaoying fault.展开更多
文摘Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of thebasaI conglomerate of the Tietonggou Formation or at the unconfondty between the Tietonggou Formation and the crystalline basement. The composition of fluid inclusions in the minerals indicates thatthe nature and composition of ore-forming hydrothermal solutions show a drashca1 change soon afterthe solutions reached the Tietonggou Formation from the crystailine basement, resulhng in go1d pre -cipitation. So the Bankuan gold deposit can be assigned to the conglomerate strata-bound-type depo-sits. 137 thermometric data are concentrated in the three ranges 400-340℃, 330-220℃ and180-160℃, represenhng three episodes of metallogenesis. Oxygen isotope studies demonstrate theevolution of ore-forming hydrothermal solutions from early metamorphic to late meteoric. Diversity oforoforming materials dominated by deep-source material is supportal by sulphur and lead isotope da-ta. From the above discussions it may be concluded that the deposit formed by metamorphism in-duced as a result of Mesozoic northward intracontinental subduction along the Machaoying fault.