A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity.This simulation and calculation results show that the bismuth-oxide photonic crystal fiber(Bi-PCF) has...A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity.This simulation and calculation results show that the bismuth-oxide photonic crystal fiber(Bi-PCF) has near zero dispersion around 1550 nm.Its dispersion slop in the communication wavelength range is also relatively flat.Moreover,both nonlinear coefficient and model field distribution are obtained.Compared with the experimental results by SiO2-PCF,it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification(OPA).展开更多
All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for ...All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-to-digital (A/D) conversion system through generating low noise, linear chirp distribution and flat super-continuum (SC). Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.展开更多
A label swapping scheme of an optical labeled signal with differential phase shift keying (DPSK) for label at 2.5 Gb/s and pulse position modulation (PPM) for payload at 40 Gb/s is demonstrated by simulation. Powe...A label swapping scheme of an optical labeled signal with differential phase shift keying (DPSK) for label at 2.5 Gb/s and pulse position modulation (PPM) for payload at 40 Gb/s is demonstrated by simulation. Power penalties of -1.8 and -0.8 dB are achieved for both the payload and label over 80-kin single mode fiber (SMF) transmission. This labeling scheme allows the use of four-wave mixing (FWM) in semiconductor optical amplifier (SOA) to perform label erasure, with advantages of transparence for bit rate, high processing rate, simple architecture, and low cost. Label swapping is demonstrated with appropriate penalties of -3.5 and 0.8 dB for PPM payload and new DPSK label, respectively. To further prove the effectiveness of the proposed scheme, label swapping in the case of using 10-Gb/s DPSK label is also investigated with the nnwer penaltios af tq n.nd P dR fnr PPM paylnnrl and new dPRIC lnhol展开更多
基金supported by the"973" Project of China (No.2010CB328300)
文摘A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity.This simulation and calculation results show that the bismuth-oxide photonic crystal fiber(Bi-PCF) has near zero dispersion around 1550 nm.Its dispersion slop in the communication wavelength range is also relatively flat.Moreover,both nonlinear coefficient and model field distribution are obtained.Compared with the experimental results by SiO2-PCF,it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification(OPA).
基金supported by the Doctoral Program of Higher Education Research Fund (No.1101.01.001.672)
文摘All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-to-digital (A/D) conversion system through generating low noise, linear chirp distribution and flat super-continuum (SC). Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.
基金supported by the National Natural Science Foundation of China(Nos.60977002,60677004, and 61001061)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Nos. 200800131002 and 20100005120014)the Fundamental Research Fund for the Central Universities(No. BUPT2009RC0313)
文摘A label swapping scheme of an optical labeled signal with differential phase shift keying (DPSK) for label at 2.5 Gb/s and pulse position modulation (PPM) for payload at 40 Gb/s is demonstrated by simulation. Power penalties of -1.8 and -0.8 dB are achieved for both the payload and label over 80-kin single mode fiber (SMF) transmission. This labeling scheme allows the use of four-wave mixing (FWM) in semiconductor optical amplifier (SOA) to perform label erasure, with advantages of transparence for bit rate, high processing rate, simple architecture, and low cost. Label swapping is demonstrated with appropriate penalties of -3.5 and 0.8 dB for PPM payload and new DPSK label, respectively. To further prove the effectiveness of the proposed scheme, label swapping in the case of using 10-Gb/s DPSK label is also investigated with the nnwer penaltios af tq n.nd P dR fnr PPM paylnnrl and new dPRIC lnhol