基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用...基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用多(短)链并行的方式代替原来的长链生成方式,提高了算法收敛的稳定性;并对特定模型下的构造过程进行分析,优化了状态空间,提高了算法的搜索效率;同时结合多混合的MCMC方法,进一步提高了算法估计的精确度和收敛速度。仿真结果表明,改进后的算法对波达方向估计的准确性和实时性都有很大提升。展开更多
文摘基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用多(短)链并行的方式代替原来的长链生成方式,提高了算法收敛的稳定性;并对特定模型下的构造过程进行分析,优化了状态空间,提高了算法的搜索效率;同时结合多混合的MCMC方法,进一步提高了算法估计的精确度和收敛速度。仿真结果表明,改进后的算法对波达方向估计的准确性和实时性都有很大提升。