海上风电场需要对所使用的高压XLPE绝缘海缆方案的稳定性能以及故障损失风险进行评估,但目前国内外尚无应用在此领域中可靠性评估的实用方法。结合近海风电场海底电缆传输系统多种故障状态的特点,建立海底电缆的故障树模型和马尔可夫可...海上风电场需要对所使用的高压XLPE绝缘海缆方案的稳定性能以及故障损失风险进行评估,但目前国内外尚无应用在此领域中可靠性评估的实用方法。结合近海风电场海底电缆传输系统多种故障状态的特点,建立海底电缆的故障树模型和马尔可夫可修系统可靠性评估模型。最后,以国内某海上风电项目为案例进行分析,计算结果显示:三种方案的稳态无故障状态概率分别为97.5%、96.7%、97.4%;年传输容量期望计算值分别为1.9496×10^2、1.9673×10^2、1.9496×10^2MW;年故障损失成本期望值分别为2.51×10^3、1.77×10^3、2.61×10^3万元。根据计算结果可知,方案1无故障状态概率最大,但是三方案中,年传输容量和故障损失成本期望计算值对比分析,方案2(2回110 k V三芯高压XLPE绝缘交流钢丝铠装海缆)较优。实例表明,近海风电场高压XLPE绝缘海底电缆传输系统的可靠性评估需考虑其不同的故障状态,马尔可夫可修系统模型能够根据海缆传输系统不同的故障状态,从传输容量和故障损失成本的角度优化海缆的设计方案。展开更多
文摘海上风电场需要对所使用的高压XLPE绝缘海缆方案的稳定性能以及故障损失风险进行评估,但目前国内外尚无应用在此领域中可靠性评估的实用方法。结合近海风电场海底电缆传输系统多种故障状态的特点,建立海底电缆的故障树模型和马尔可夫可修系统可靠性评估模型。最后,以国内某海上风电项目为案例进行分析,计算结果显示:三种方案的稳态无故障状态概率分别为97.5%、96.7%、97.4%;年传输容量期望计算值分别为1.9496×10^2、1.9673×10^2、1.9496×10^2MW;年故障损失成本期望值分别为2.51×10^3、1.77×10^3、2.61×10^3万元。根据计算结果可知,方案1无故障状态概率最大,但是三方案中,年传输容量和故障损失成本期望计算值对比分析,方案2(2回110 k V三芯高压XLPE绝缘交流钢丝铠装海缆)较优。实例表明,近海风电场高压XLPE绝缘海底电缆传输系统的可靠性评估需考虑其不同的故障状态,马尔可夫可修系统模型能够根据海缆传输系统不同的故障状态,从传输容量和故障损失成本的角度优化海缆的设计方案。