期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
NM-SpMM:面向国产异构向量处理器的半结构化稀疏矩阵乘算法
1
作者
姜晶菲
何源宏
+2 位作者
许金伟
许诗瑶
钱希福
《计算机工程与科学》
CSCD
北大核心
2024年第7期1141-1150,共10页
深度神经网络在自然语言处理、计算机视觉等领域取得了优异的成果,由于智能应用处理数据规模的增长和大模型的快速发展,对深度神经网络的推理性能要求越来越高,N∶M半结构化稀疏化技术成为平衡算力需求和应用效果的热点技术之一。国产...
深度神经网络在自然语言处理、计算机视觉等领域取得了优异的成果,由于智能应用处理数据规模的增长和大模型的快速发展,对深度神经网络的推理性能要求越来越高,N∶M半结构化稀疏化技术成为平衡算力需求和应用效果的热点技术之一。国产异构向量处理器FT-M7032为智能模型处理中的数据并行和指令并行开发提供了较大空间。针对N∶M半结构化稀疏模型计算稀疏模式多样性,提出了一种面向FT-M7032的可灵活配置的稀疏矩阵乘算法NM-SpMM。NM-SpMM设计了一种高效的压缩偏移地址稀疏编码格式COA,避免了半结构化参数配置对稀疏数据访存计算的影响。基于COA编码,NM-SpMM对不同维度稀疏矩阵计算进行了细粒度优化。在FT-M7032单核上的实验结果表明,相较于稠密矩阵乘,NM-SpMM能获得1.73~21.00倍的加速,相较于采用CuSPARSE稀疏计算库的NVIDIA V100 GPU,能获得0.04~1.04倍的加速。
展开更多
关键词
深度神经网络
图形处理器
向量处理器
稀疏矩阵乘
流水线
下载PDF
职称材料
题名
NM-SpMM:面向国产异构向量处理器的半结构化稀疏矩阵乘算法
1
作者
姜晶菲
何源宏
许金伟
许诗瑶
钱希福
机构
国防科技大学计算机学院并行与分布计算全国重点实验室
出处
《计算机工程与科学》
CSCD
北大核心
2024年第7期1141-1150,共10页
文摘
深度神经网络在自然语言处理、计算机视觉等领域取得了优异的成果,由于智能应用处理数据规模的增长和大模型的快速发展,对深度神经网络的推理性能要求越来越高,N∶M半结构化稀疏化技术成为平衡算力需求和应用效果的热点技术之一。国产异构向量处理器FT-M7032为智能模型处理中的数据并行和指令并行开发提供了较大空间。针对N∶M半结构化稀疏模型计算稀疏模式多样性,提出了一种面向FT-M7032的可灵活配置的稀疏矩阵乘算法NM-SpMM。NM-SpMM设计了一种高效的压缩偏移地址稀疏编码格式COA,避免了半结构化参数配置对稀疏数据访存计算的影响。基于COA编码,NM-SpMM对不同维度稀疏矩阵计算进行了细粒度优化。在FT-M7032单核上的实验结果表明,相较于稠密矩阵乘,NM-SpMM能获得1.73~21.00倍的加速,相较于采用CuSPARSE稀疏计算库的NVIDIA V100 GPU,能获得0.04~1.04倍的加速。
关键词
深度神经网络
图形处理器
向量处理器
稀疏矩阵乘
流水线
Keywords
deep neural network
graphics processing unit
vector processor
sparse matrix multiplication
pipeline
分类号
TP303 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
NM-SpMM:面向国产异构向量处理器的半结构化稀疏矩阵乘算法
姜晶菲
何源宏
许金伟
许诗瑶
钱希福
《计算机工程与科学》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部